Polymer Mechanics

, Volume 9, Issue 6, pp 855–859 | Cite as

Rheological characteristics of melts of low-molecular-weight branched polyethylene in the region of critical molecular weights

  • É. É. Yakobson
  • L. A. Faitel'son
  • L. L. Sul'zhenko
  • V. P. Kovtun
  • N. M. Domareva
  • I. P. Briedis
  • V. V. Aref'eva


The viscosity and the first difference of the normal stresses have been measured at stationary shear rates from 5.68 to 4500 sec−1 for melts of low-density polyethylenes obtained by thermal degradation of commercial polyethylene in a nitrogen atmosphere. In addition, the complex modulus has been measured on the angular frequency range from 0.396 to 198.5 sec−1. Three regions of molecular weights differing with respect to the value of the exponent in the relation η0 = kMα have been established. At\(\bar M\)>\(\bar M_c \) normal stresses are observed in the region of shear rates corresponding to a linear dependence of the shear rate on the shear stresses.


Viscosity Atmosphere Molecular Weight Shear Stress Polyethylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. Bueche, Physical Properties of Polymers, Interscience, New York-London (1902).Google Scholar
  2. 2.
    G. C. Berry and T. G. Fox, Adv. Polym. Sci.,5, 261 (1968).Google Scholar
  3. 3.
    A. Teramoto and H. Fujita; Makromolec. Chem.,85, 261 (1965).Google Scholar
  4. 4.
    R. S. Porter and J. F. Johnson, Trans. Soc. Rheol.,6, 107 (1962).Google Scholar
  5. 5.
    R. I. Boyce, W. Bauer, and E. Collins, Trans. Soc. Rheol.,10, No. 2, 545 (1966).Google Scholar
  6. 6.
    T. W. Bates, Europ. Polym. J.,8, 19 (1972).Google Scholar
  7. 7.
    H. P. Schreiber, E. B. Bagley, and D. C. West, Polymer,4, 355 (1963).Google Scholar
  8. 8.
    R. N. Shroff and M. Shida, J. Polym. Sci.,A2, No. 8, 1917 (1970).Google Scholar
  9. 9.
    J. F. Johnson, E. M. Barall, and R. S. Porter, Trans. Soc. Rheol.,12, No. 1, 133 (1968).Google Scholar
  10. 10.
    R. S. Porter and J. F. Johnson, J. Appl. Phys.,32, No. 11, 2326 (1961).Google Scholar
  11. 11.
    Shigeru Saeda, Junji Yotsujanagy, and Kinya Yamaguchi, J. Appl. Polym. Sci.,15, No. 2, 277 (1971).Google Scholar
  12. 12.
    S. Ya. Frenkel', Introduction to the Statistical Theory of Polymerization [in Russian], Leningrad (1965), p. 247.Google Scholar
  13. 13.
    Al. Al. Berlin and N. S. Enikolopyan, Vysokomolek. Soed.,A10, 1475 (1968).Google Scholar
  14. 14.
    I. P. Briedis, L. L. Sul'zhenko, L. A. Faitel'son, and É. É. Yakobson, Mekhan. Polim., No. 6, 1129 (1973).Google Scholar
  15. 15.
    R. S. Porter, E. P. Knox, and J. F. Johnson, Trans. Soc. Rheol.,12, No. 3, 409 (1968).Google Scholar
  16. 16.
    A. K. Doolittle, J. Appl. Phys.,22, No. 6, 1031 (1951).Google Scholar
  17. 17.
    T. G. Fox and P. G. Flory, J. Polym. Sci.,14, 315 (1954).Google Scholar
  18. 18.
    I. D. Huppler, E. Achare, and L. A. Holmes, Trans. Soc. Rheol.,11, No. 2, 159 (1967).Google Scholar
  19. 19.
    S. Middleman, Flow of High Polymers, Wiley (1968).Google Scholar
  20. 20.
    I. M. Belkin, G. V. Vinogradov, and A. I. Leonov, Rotary Instruments [in Russian], Moscow (1968).Google Scholar
  21. 21.
    C. Bruce and W. H. Schwarz, Amer. Chem. Soc. Polym. Prepr.,10, 152 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • É. É. Yakobson
  • L. A. Faitel'son
  • L. L. Sul'zhenko
  • V. P. Kovtun
  • N. M. Domareva
  • I. P. Briedis
  • V. V. Aref'eva

There are no affiliations available

Personalised recommendations