Skip to main content
Log in

Microheterogeneity of urinary albumin and tubular proteinuria in juvenile diabetes mellitus

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

We studied differential urinary albumin excretion by a double one-dimensional gel electrophoresis with decyl sodium sulphate-polyacrylamide gel electrophoresis in the first, and isoelectric focusing in the second dimension in 37 diabetic children and 20 healthy subjects. In addition, total proteins, albumin, β2-microglobulin and molecular size distribution of urinary proteins were measured. the latter using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Whilst albuminuria was not significantly different from controls we found an increased microheterogeneity of urinary albumin in 38% of patients. In addition, low molecular weight protein (P<0.05) and β2-microglobulin excretion (P<0.01) were elevated. It is suggested that the appearance of highly heterogenous albumin in the pI range of 5.3–5.9 is the result of a decreased tubular reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mogensen CE (1987) Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 31: 673–689

    Google Scholar 

  2. Viberti GC, Jarrett RJ, Mahmud U, Hill RD, Argyropoulos A, Keen H (1982) Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet I: 1430–1432

    Google Scholar 

  3. Hermansson G, Ludvigsson J (1980) Renal function and blood-pressure reaction during exerise in diabetic and non-diabetic children and adolescents. Acta Paediatr Scand [Suppl] 283: 86–94

    Google Scholar 

  4. Viberti GC, Jarrett RJ, McCartney M, Keen H (1978) Increased glomerular permeability to albumin induced by exercise in diabetic subjects. Diabetologia 14: 293–300

    Google Scholar 

  5. Huttunen NP, Käär ML, Puukka R, Akerblom HK (1981) Exercise-induced proteinuria in children and adolescents with type 1 (insulindependent) diabetes. Diabetologia 21: 495–497

    Google Scholar 

  6. Ellis D, Becker DJ, Daneman D, Lobes L, Drash AL (1983) Proteinuria in children with insulin-dependent diabetes: relationship to duration of disease, metabolic control and retinal changes. J Pediatr 102: 673–680

    Google Scholar 

  7. Poortmans J, Dorchy H, Toussaint D (1982) Urinary excretion of total proteins, albumin and β2-microglobulin during rest and exercise in diabetic adolescents with and without retinopathy. Diabetes Care 5: 617–623

    Google Scholar 

  8. Wartha R, Nebinger D, Gekle D (1984) Low mulecular weight proteinuria in diabetic children: a marker of early diabetic nephropathy? Proc Eur Dial Transplant Assoc 21: 638–641

    Google Scholar 

  9. Walton C, Bodansky HJ, Wales JK, Forbes MA, Cooper EH (1988) Tubular dysfunction and microalbuminuria in insulin dependent diabetes. Arch Dis Child 63: 244–249

    Google Scholar 

  10. Wartha R, Schärer K, Wollanka H, Schmidt H, Hasslacher C (1989) Patterns of proteinuria and urinary enzyme excretion in children and adolescents with diabetes mellitus. In: Laron Z, Karp M (eds) Prognosis of diabetes in children. Pediatric and adolescent endocrinology, vol 18. Karger, Basel, pp 138–148

    Google Scholar 

  11. Candiano G, Ghiggeri GM, Delfino G, Queirolo C, Gianazza E, Rightti PG (1984) Glycosylation of human albumin in diabetes mellitus: extensive microheterogeneity of serum and urinary species as revealed by isoelectric focusing. Electrophoresis 5: 217–222

    Google Scholar 

  12. Candiano G, Ginevri F, Acerbo S, Garberi A, Gusmano R, Ghiggeri GM (1990) Analysis of albumin charge by direct immunofixation in ultrathin gels. Kidney Int 37: 1002–1005

    Google Scholar 

  13. Layton GJ, Jerums G (1988) Effect of glycation of albumin on its renal clearance in normal and diabetic rats. Kidney Int 33: 673–676

    Google Scholar 

  14. Christensen EI, Rennke HG, Carone FA (1983) Renal tubular uptake of protein: effect of molecular charge. Am J Physiol 244: 436–441

    Google Scholar 

  15. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254

    Google Scholar 

  16. Pesce AJ, Boreisha I, Pollak VE (1972) Rapid differentiation of glomerular and tubular proteinuria by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Clin Chim Acta 40: 27–34

    Google Scholar 

  17. Boesken WH (1975) Discelectrophoretic molecular weight analysis of urinary proteins. Contrib Nephrol 1: 143–155

    Google Scholar 

  18. Goerg A, Postel W, Westermeier R, Righetti PG, Ek C (1982) One and two dimensional electrophoresis performed horizontally in ultrathin SDS pore-gradient gels LKB application note 320 Bromma, Sweden

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  20. Thanner F, Wartha R, Gekle D (1979) Molekulargewichtsbezogene Analyse der physiologischen Proteinurie Neugeborener. Klin Wochenschr 57: 285–291

    Google Scholar 

  21. Pesce AJ, Hsu A, Kornhauser C, Sethi K, Ooi BS, Pollak VE (1976) Method for measuring the concentration of urinary proteins according to their molecular size category. Clin Chem 22: 667–672

    Google Scholar 

  22. Altland K, Rauh S, Hackler R (1981) Demonstration of human prealbumin by double one-dimensional slab gel electrophoresis. Electrophoresis 2: 148–155

    Google Scholar 

  23. Altland K, Banzhoff A, Hackler R, Rossmann U (1984) Improved rehydration procedure for polyacrylamide gels in presence of urea: demonstration of inherited human prealbumin variants by isoelectric focusing in an immobilized pH gradient. Electrophoresis 5: 379–381

    Google Scholar 

  24. Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6: 103–112

    Google Scholar 

  25. Ries M (1989) Mikroheterogenität des Urinalbumins and tubuläre proteinurie im Frühstadium des Diabetes mellitus im Kindesalter. Inauguraldissertation, University of Heidelberg

  26. Menzel HJ, Kladetzky RG, Assmann G (1982) One-step screening method for the polymorphism of apolipoproteins A-I, A-II, and A-IV. J Lipid Res 23: 915–922

    Google Scholar 

  27. Chiarelli F, La Penna G, Morgese G (1989) Urinary excretion of low-molecular-weight proteins in type I diabetic children and adolescents. In: Laron Z, Karp M (eds) Prognosis of diabetes in children. Pediatric and adolescent endocrinology, vol 18, Karger, Basel, pp 160–166

    Google Scholar 

  28. Gibb DM, Tomlinson PA, Dalton NR, Turner C, Shah V, Barratt TM (1989) Renal tubular proteinuria and microalbuminuria in diabetic patients. Arch Dis Child 64: 129–134

    Google Scholar 

  29. Urakami T, Fujita H, Kitagawa T, Tanaka T, Tanae A, Hibi I (1989) Microalbumin,N-acetyl-β-glucosaminidase, α1-microglobulin and β2-microglobulin in normal and IDDM children. In: Laron Z, Karp M (eds) Prognosis of diabetes in children. Pediatric and adolescent endocrinology, vol 18. Karger Basel, pp 155–159

    Google Scholar 

  30. Ditzel J, Brochner-Mortensen J, Kawahara R (1982) Dysfunction of tubular phosphate reabsorption related to glomerular filtration and blood glucose control in diabetic children. Diabetologia 23: 406–410

    Google Scholar 

  31. Ellis EN, Brouhard BH, Lagrone L, Travis LB (1983) Urinary excretion ofN-acetyl-beta-d-glucosaminidase in children with type 1 diabetes mellitus. Diabetes Care 6: 251–255

    Google Scholar 

  32. Watanable Y, Nunot K, Maki Y, Nakamura Y, Fujishima M (1987) Contribution of glycemic control to the levels of urinaryN-acetyl-β-d-glucosaminidase (NAG), total protein, β2-microglobulin and serum NAG in type 1 (insulin-dependent) diabetes mellitus without microalbuminuria. Clin Nephrol 28: 227–231

    Google Scholar 

  33. Whiting PH, Ross IS, Borthwick L (1979)N-acetyl-beta-d-glucosaminidase levels and diabetic microangiophathy. Clin Chim Acta 97: 191–195

    Google Scholar 

  34. Purtell JN, Pesce AJ, Clyne DH, Miller WC, Pollak VE (1976) Isoelectric point of albumin: effect on renal handling of albumin. Kidney Int 16: 366–376

    Google Scholar 

  35. Nakamura Y, Myers B (1988) Charge slectivity of proteinuria in diabetic glomerulopathy. Diabetes 37: 1202–1211

    Google Scholar 

  36. Sumpio BE, Maack T (1982) Kinetics, competition, and selectivity of tubular absorption of proteins. Am J Physiol 243: 379–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, M., Schärer, K., Wartha, R. et al. Microheterogeneity of urinary albumin and tubular proteinuria in juvenile diabetes mellitus. Pediatr Nephrol 5, 582–586 (1991). https://doi.org/10.1007/BF00856644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00856644

Key words

Navigation