Polymer Mechanics

, Volume 7, Issue 1, pp 63–73 | Cite as

Application of the nonlinear theory of heredity to the description of time effects in polymeric materials

  • Yu. N. Rabotnov
  • L. Kh. Papernik
  • E. I. Stepanychev
Article

Abstract

A relation is established between the heredity theory with time-invariant nonlinearity and fractional-exponential kernels and the Volterra-Fréchet theory for uniaxial tension. A constitutive equation is proposed for processes accompanied by decreasing strain. A procedure for determining the necessary material characteristics from creep and recovery data is considered.

Keywords

Constitutive Equation Polymeric Material Time Effect Uniaxial Tension Material Characteristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. Volterra, Fonctions de Lignes, Paris (1913).Google Scholar
  2. 2.
    M. Fréchet, Annal. Sci. Ecol. Norm. Sup. Ser. 3,27, 193 (1910).Google Scholar
  3. 3.
    O. Nakada, J. Phys. Soc. Japan,15, No. 12, 2280 (1960).Google Scholar
  4. 4.
    M. Gradowczyk, Int. J. Sol. Struct.,5, No. 8, 873 (1969).Google Scholar
  5. 5.
    F. Lockett, Intern. J. Engng. Sci.,3, 59 (1965).Google Scholar
  6. 6.
    J. Lai and W. Findley, Trans. Soc. Rheol.,12, No. 2, 243 (1968).Google Scholar
  7. 7.
    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Moscow (1966).Google Scholar
  8. 8.
    R. Goldhoff, Proc. ASTM,61, 907 (1961).Google Scholar
  9. 9.
    Yu. N. Rabotnov, Vestn. MGU, No. 10, 81 (1948).Google Scholar
  10. 10.
    F. Turner and K. Blomquist, JAS,23, No. 12, 1121 (1956).Google Scholar
  11. 11.
    Yu. N. Rabotnov, L. Kh. Papernik, and E. N. Zvonov, Tables of the Fractional-Exponential Function and Its Integral [in Russian], Moscow (1969).Google Scholar
  12. 12.
    E. N. Zvonov, N. I. Malinin, L. Kh. Papernik, and B. M. Tseitlin, Inzh. Zh. MTT, No. 5, 76 (1968).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • Yu. N. Rabotnov
  • L. Kh. Papernik
  • E. I. Stepanychev

There are no affiliations available

Personalised recommendations