Polymer Mechanics

, Volume 12, Issue 2, pp 315–318 | Cite as

Creep of polymers during tension under conditions of hydrostatic pressure

  • M. Shermatov
  • V. S. Kuksenko
  • A. I. Slutsker
Brief Communications


Hydrostatic pressure results in decrease in the creep rate of a polymer loaded by tensile stress. The decrease in the creep rate is associated with the increase in intermolecular interaction. The correlation found between the creep rate of material loaded by a constant tensile force and with change in the melting temperature of a polymer under pressure appears to be commensurate with change in intermolecular interaction.


Polymer Melting Temperature Tensile Stress Hydrostatic Pressure Intermolecular Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. N. Zhurkov and T. P. Sanfirova, "The connection between strength and creep of metals and alloys," Zh. Tekh. Fiz.,28, No. 8, 1720–1728 (1958).Google Scholar
  2. 2.
    M. I. Bessonov, "Mechanical destruction of solids," Usp. Fiz. Nauk,83, 107–133 (1964).Google Scholar
  3. 3.
    V. R. Regel', A. I. Slutsker, and É. E. Tomashevskii, The Kinetic Nature of the Strength of Solids. Part 2 [in Russian], Moscow (1974).Google Scholar
  4. 4.
    V. R. Regel', T. B. Boboev, and N. N. Chernyi, "The temperature—time dependence of strength of polymers under conditions of ultraviolet irradiation," Mekh. Polim., No. 3, 442–448 (1969).Google Scholar
  5. 5.
    F. Bueche, "Tensile strength of plastics below the glass temperature," J. Appl. Phys.,28, 784–787 (1957).Google Scholar
  6. 6.
    A. D. Chevychelov, "Mechanics of a polymer chain drawn in the amorphous region of an amorphous-crystalline polymer. Estimate of outer boundaries of crystallites," Mekh. Polim., No. 5, 664–670 (1966).Google Scholar
  7. 7.
    G. M. Bartenev, "Strength and mechanism of rupture of polymers," Usp. Khim.,24, 815–840 (1955).Google Scholar
  8. 8.
    A. Tobolsky and H. Eyring, "Mechanical properties of polymer materials," J. Chem. Phys.,11, 125–134 (1943).Google Scholar
  9. 9.
    B. D. Colemen, "Application of the theory of absolute reaction rates to the creep failure of polymer filaments," J. Polym. Sci.,20, 447–455 (1956).Google Scholar
  10. 10.
    A. I. Soshko, A. M. Spas, and A. N. Tynnyi, "Some peculiarities of the destruction of solid polymers in liquid media," Fiz.-Khim. Mekh. Mater., No. 5, 578–584 (1968).Google Scholar
  11. 11.
    V. S. Kuksenko, M. Shermatov, and A. I. Slutsker, "Deformation and destruction of polymers in active media," Fiz.-Khim. Mekh. Mater., No. 5, 51–55 (1974).Google Scholar
  12. 12.
    G. G. Samoilov and É. E. Tomashevskii, "Photochemical destruction and durability of irradiated stressed polymers," Fiz. Tverd. Tela,10, No. 10, 3039–3045 (1968).Google Scholar
  13. 13.
    S. B. Ainbinder, K. I. Alksne, E. L. Tyunina, and M. E. Laka, Properties of Polymers under High Pressures [in Russian], Moscow (1973).Google Scholar
  14. 14.
    A. I. Petrov and V. I. Betekhtin, "Apparatus for tests on long-time durability and creep under conditions of hydrostatic pressure," Zavod. Lab., No. 8, 1004–1006 (1970).Google Scholar
  15. 15.
    E. Baer and I. L. Kardos, "Melting of homopolymers under pressure," J. Polym. Sci.,3A, 2827–2841 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • M. Shermatov
  • V. S. Kuksenko
  • A. I. Slutsker

There are no affiliations available

Personalised recommendations