Advertisement

Polymer Mechanics

, Volume 9, Issue 4, pp 592–599 | Cite as

Carrying capacity of rings formed by winding composites with high-modulus anisotropic fiber reinforcement

  • Yu. M. Tarnopol'skii
  • G. G. Portnov
  • Yu. B. Spridzans
  • V. N. Bulmanis
Article

Abstract

The characteristics of composites associated with the essential anisotropy of the reinforcing fibers are studied. The effect of distortion and pretensioning of the reinforcement on the axisymmetricity of the strain field, the moduli of elasticity, and the strength in the direction of the fibers under external and internal pressure are investigated with allowance for the high compliance of the material in the transverse direction. Numerical estimates are obtained for the moduli of elasticity Eθ and Er, expansion coefficient αθ and αr, and initial temperature stresses σ r 0 and σ θ 0 for a model material. The dependence of the bursting pressure on the thickness of the rings is described and strength criteria are formulated. In all the problems considered it is necessary to make allowance for the high compliance of the composites in the transverse direction.

Keywords

Anisotropy Initial Temperature Expansion Coefficient Transverse Direction Model Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. L. Blakslee, A. A. Pallozzi, W. A. Doig, G. B. Spence, and D. P. Hanley, Fabrication, Testing and Design Studies with "Thornel" Graphite—Fiber, Epoxy—Resin Composites. 12th Nat. Symp., Vol. 12, Sect. A1–6 (1967).Google Scholar
  2. 2.
    Yu. M. Tarnopol'skii, Mekhan. Polim., No. 3, 541 (1972).Google Scholar
  3. 3.
    D. R. Doner and R. C. Novak, 24th Ann. Techn. Conf. Reinforced Plastics/Composites Division Soc. Plast. Ind. Inc., Sect. 2-D, 1 (1969).Google Scholar
  4. 4.
    Yu. M. Tarnopol'skii, G. G. Portnov, and I. G. Zhigun, Mekhan. Polim., No. 2, 243 (1967).Google Scholar
  5. 5.
    Yu. M. Tarnopol'skii (editor), Static Testing Methods for Reinforced Plastics [in Russian], Riga (1972).Google Scholar
  6. 6.
    V. V. Bolotin, Mekhan. Polim., No. 1, 11 (1966).Google Scholar
  7. 7.
    K. S. Bolotina, Izv. VUZ. Mashinostr., No. 12, 12 (1966).Google Scholar
  8. 8.
    Whitney and Ashton, Raketn. Tekh. i Kosmonavt., No. 9, 56 (1971).Google Scholar
  9. 9.
    V. P. Nikolaev, Mekhan. Polim., No. 2, 374 (1972).Google Scholar
  10. 10.
    V. V. Bolotin and K. S. Bolotina, Mekhan. Polim., No. 1, 136 (1967).Google Scholar
  11. 11.
    G. G. Portnov, V. A. Goryushkin, and A. G. Tilyuk, Mekhan. Polim., No. 3, 505 (1969).Google Scholar
  12. 12.
    G. G. Portnov and R. V. Zargaryan, Mekhan. Polim., No. 6, 1130 (1971).Google Scholar
  13. 13.
    G. G. Portnov and V. N. Bulmanis, Mekhan. Polim., No. 6, 1087 (1972).Google Scholar
  14. 14.
    C. B. Norris, Strength of Orthotropic Materials Subjected to Combined Stresses, Rept. 1816, 3rd Ed., U. S. Forest Products Lab., Madison, Wis. (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Yu. M. Tarnopol'skii
  • G. G. Portnov
  • Yu. B. Spridzans
  • V. N. Bulmanis

There are no affiliations available

Personalised recommendations