Advertisement

Polymer Mechanics

, Volume 8, Issue 4, pp 614–618 | Cite as

The anisotropy of compact bone material

  • A. A. Uten'kin
  • E. K. Ashkenazi
Article
  • 33 Downloads

Abstract

From the measurements of the main elements of the microstructure of compact bone material, it is concluded that the theoretical model of a transtropic material can be applied to bone tissue. This conclusion is confirmed by the experimental data obtained on compression. The correlation connection between the ultimate strength of compact bone material and the elasticity modulus has been found. It is shown that the anisotropy of the compact material is satisfactorily described by the tensor formula.

Keywords

Microstructure Experimental Data Anisotropy Elasticity Modulus Theoretical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. V. Rusakov, Pathological Anatomy of Diseased Bone Systems [in Russian], Moscow (1959), p. 141.Google Scholar
  2. 2.
    A. S. Obysov, The Reliability of Biological Tissues [in Russian], Moscow (1971).Google Scholar
  3. 3.
    H. Holligshaus, Mech. Engineering,81, No. 4, 85 (1954).Google Scholar
  4. 4.
    D. Taysum, F. Evans, W. Hammer, W. Yee, C. Rehfield, and L. Blake, in: Some Aspects of Internal Irradiation (1962), p. 145.Google Scholar
  5. 5.
    F. Evans and M. Lebow, J. Appl. Physiol.,3, 563 (1951).PubMedGoogle Scholar
  6. 6.
    J. Smith and R. Walmsley, J. Anat.,93, 503 (1959).PubMedGoogle Scholar
  7. 7.
    W. Dempster and R. Coleman, J. Appl. Physiol.,16, 355 (1961).PubMedGoogle Scholar
  8. 8.
    E. P. Podrushnyak and E. I. Suslov, Ortoped. Travmatol.,1, 73 (1967).Google Scholar
  9. 9.
    I. V. Shumada, V. M. Krivenko, T. N. Perfilova, and N. I. Beletskii, Ortoped. Travmatol.,9, 18 (1970).Google Scholar
  10. 10.
    Yu. Zh. Saulgozis, G. O. Pfafrod, N. V. Knets, and Kh. A. Yanson, Mekhan. Polim., No. 1, 167 (1971).Google Scholar
  11. 11.
    W. Dempster and R. Liddicoat, Am. J. Anat.,91, 331 (1952).PubMedGoogle Scholar
  12. 12.
    C. Hirsch and O. Silva, Acta Orthoped. Scand.,38, 45 (1967).Google Scholar
  13. 13.
    A. A. Uten'kin and A. A. Sveshnikova, Problemy Prochnosti,3, 40 (1971).Google Scholar
  14. 14.
    Plastic Masses. Methods of Compression Testing [in Russian], GOST 4651–63.Google Scholar
  15. 15.
    Timber. Methods of Determining Ultimate Compressive Strength [in Russian], GOST 11492–65.Google Scholar
  16. 16.
    E. K. Ashkenazi and A. A. Pozdynakov, Zav. Lab.,31, 1245 (1965).Google Scholar
  17. 17.
    E. K. Ashkenazi and V. N. Elokhov, Zav. Lab.,32, 597 (1966).Google Scholar
  18. 18.
    A. L. Rabinovich, Proc. of the Central Aero-Hydrodynamics Institute [in Russian], Moscow (1946), p. 582.Google Scholar
  19. 19.
    E. K. Ashkenazi, The Anisotropy of Materials Used in Mechanical Engineering [in Russian], Leningrad (1969), p. 42.Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • A. A. Uten'kin
  • E. K. Ashkenazi

There are no affiliations available

Personalised recommendations