Growth of a nanosecond pulsed discharge in a gas with one-electron initiation

  • V. V. Kremnev
  • G. A. Mesyats


Pulse breakdown on gaps of millimeter order at substantial overvoltages is explained in terms of a discharge mechanism involving photoelectric emission from the cathode followed by collisional multiplication in the gas to give avalanches. The mechanism is used to deduce a theoretical equation for the time of discharge buildup in one-electron mutation, which is compared with experiment.


Mathematical Modeling Mechanical Engineer Industrial Mathematic Discharge Mechanism Pulse Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Retter, Electron Avalanches in Gases [Russian translation], Mir, Moscow (1968).Google Scholar
  2. 2.
    R. C. Fletcher, “Impulse breakdown in the 10−9 sec range of air at atmospheric pressure,” Phys. Rev.,76, No. 10, 1501–1511 (1949).Google Scholar
  3. 3.
    Yu. E. Nesterikhin, V. S. Komel'kov, and E. Z. Meilikhov, “Pulse breakdown of short gaps on the nanosecond time range,” Zh. Tekh. Fiz.,34, No. 1, 40–52 (1964).Google Scholar
  4. 4.
    G. A. Mesyats and Yu. I. Bychkov, “A statistical study of nanosecond delay in breakdown of short gaps in very strong fields,” Zh. Tekh. Fiz.,37, No. 9, 1712 (1967).Google Scholar
  5. 5.
    G. A. Mesyats, Yu. I. Bychkov, and A. M. Iskol'dskii, “Nanosecond discharge buildup times in short air gaps,” Zh. Tekh. Fiz.,38, No. 8, 1281–1287 (1968).Google Scholar
  6. 6.
    G. A. Mesyats, V. V. Kremnev, G. S. Korshunov, and Yu. B. Yankelevich, “Current and voltage in sparks in nanosecond impulse breakdown of a gas gap,” Zh. Tekh. Fiz.,39, No. 1, 75–81 (1969).Google Scholar
  7. 7.
    L. G. Bychkova, Yu. I. Bychkov, and G. A. Mesyats, “Marked increase in breakdown delay in gas gaps in strong electric fields,” Izv. VUZ, Fizika, No. 2, 36–39 (1969).Google Scholar
  8. 8.
    L. G. Bychkova, Yu. I. Bychkov, G. A. Mesyats, and Ya. Ya. Yurcke, “An electron-optical study of discharge growth in a gas with one-electron initiation at high fields,” Izv. VUZ, Fizika, No. 11, 24–27 (1969).Google Scholar
  9. 9.
    V. V. Vorob'ev and A. M. Iskol'dskii, “Impulse breakdown in a uniform field in air at high over-voltages,” Zh. Tekh. Fiz.,36, No. 11, 2095–2098 (1966).Google Scholar
  10. 10.
    G. A. Mesyats, A. M. Iskol'dskii, V. V. Kremnev, L. G. Bychkova, and Yu. I. Bychkov, “Primary and secondary processes in nanosecond discharge growth in short gas gaps,” Zh. Prikl. Mekhan. i Tekh. Fiz., No. 3, 77–81 (1968).Google Scholar
  11. 11.
    A. V. Gurevich, “Some features of ohmic heating of the electron gas in a plasma,” Zh. Éksp. Teor. Fiz.,38, No. 1, 116–121 (1960).Google Scholar
  12. 12.
    H. Tholl, “Zur Entwicklung einer Elektronenlawine bei Überspannung in Stickstoff, Teil 1,” Z. Naturforsch.,19a, No. 3, 346 (1964).Google Scholar
  13. 13.
    L. Loeb, Electrical Discharges in Gases [Russian translation], Gostekhteorizdat, Moscow (1950).Google Scholar
  14. 14.
    H. Schlumbohm, “Stossionisierungskoeffizient α, mittlere Elektronenenergien und die Beneglichkeit von Elektronen in Gasen,” Z. Physik,184, 492 (1965).Google Scholar
  15. 15.
    H. Schlumbohm, “Mesung der Driftgeschwindigkeiten von Elektronen und positiven Ionen in Gasen,” Z. Physik,182, 317 (1965).Google Scholar
  16. 16.
    W. Legler, “Über die UV-Strahlung von Elektronenlawinen in Luft,” Z. Physik,143, No. 2, 173–190 (1955).Google Scholar
  17. 17.
    Yu. L. Stankevich, “The initial stage of an electrical discharge in a dense gas,” Zh. Tekh. Fiz.,40, No. 7, 1476 (1970).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • V. V. Kremnev
    • 1
  • G. A. Mesyats
    • 1
  1. 1.Tomsk

Personalised recommendations