The effective permeability tensor of heavily inhomogeneous grounds

  • S. E. Kholodovskii


A method is developed for the construction of the effective permeability tensor in an anisotropic model of nondeformable grounds with a complicated structure, consisting of systems of mutually parallel layers, joints, and slightly permeable screens (interlayers), enclosed in one another (each layer of one system consists of arbitrary oriented layers, joints and screens of another). A new filtration model of joints and screens is suggested.


Permeability Filtration Statistical Physic Complicated Structure Effective Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. G. Ar'e, Physical Fundamentals of Groundwater Flow [in Russian], Moscow (1984).Google Scholar
  2. 2.
    S. N. Chernyshev, Water Motion through Networks of Joints [in Russian], Moscow (1979).Google Scholar
  3. 3.
    E. S. Romm, Structural Models of Voids in Rocks [in Russian], Leningrad (1985).Google Scholar
  4. 4.
    A. V. Kopaev and V. M. Radygin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 179–183 (1990).Google Scholar
  5. 5.
    A. A. Buikis, “Conservative averaging modeling of filtration processes in stratified media,” Doctor of Physicomathematical Science Dissertation, Riga (1987).Google Scholar
  6. 6.
    V. P. Pilatovskii, Fundamentals of Hydromechanics of a Thin Bed [in Russian], Moscow (1966).Google Scholar
  7. 7.
    G. V. Golobev and G. G. Tumashev, Filtration of Incompressible Liquids in Inhomogeneous Porous Media [in Russian], Kazan (1972).Google Scholar
  8. 8.
    V. I. Aravin and S. N. Numerov, The Theory of Liquid and Gas Motion in Nondeformable Porous Media [in Russian], Moscow (1953).Google Scholar
  9. 9.
    K. S. Basniev, P. G. Bedrikovetskii, and E. N. Dedinets, Inzh.-Fiz. Zh.55, No. 6, 940–948 (1988).Google Scholar
  10. 10.
    M. I. Shvidler, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 112–119 (1988).Google Scholar
  11. 11.
    G. E. Barenblat and Yu. P. Zheltov, Dokl. Akad. Nauk SSSR,132, No. 3, 545–548 (1960).Google Scholar
  12. 12.
    Yu. A. Buevich, S. L. Komarinskii, V. S. Nustrov, and V. A. Ustinov, Inzh.-Fiz. Zh.,49, No. 5, 818–826 (1985).Google Scholar
  13. 13.
    V. N. Nikolaevskii, K. S. Basniev, A. T. Gorbunov, and G. A. Zotov, Mechanics of Saturated Porous Media [in Russian], Moscow (1970).Google Scholar
  14. 14.
    L. Prandtl, Fluid Mechanics [Russian translation], Moscow (1951).Google Scholar
  15. 15.
    V. A. Il'in and É. G. Poznyak, Linear Algebra [in Russian], Moscow (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. E. Kholodovskii

There are no affiliations available

Personalised recommendations