Advertisement

Investigations of the autoassociation of phenol by the NMR method

  • Yu. S. Bogachev
  • L. K. Vasyanina
  • N. N. Shapet'ko
  • V. A. Egorov
  • T. L. Alekseeva
Physical Chemistry
  • 19 Downloads

Conclusions

  1. 1.

    The chemical shift of the OH group of the phenol monomer was determined.

     
  2. 2.

    In phenolinert solvent systems a monomer-trimer equilibrium is observed, with the exception of low concentrations of phenol (~0.03 mole fraction).

     
  3. 3.

    The chemical shift of the signal of the OH group of the phenol trimer depends on the temperature.

     
  4. 4.

    The solvent CCl4 is not entirely inert.

     
  5. 5.

    The constants and thermodynamic parameters of association in systems of phenol and in inert solvent were determined.

     
  6. 6.

    In all the systems studied the enthalpy remains constant, while the entropy varies from system to system.

     

Keywords

Entropy Phenol Enthalpy Chemical Shift Mole Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. Emsley, J. Finney, and L. Sutcliff, High-Resolution NMR Spectroscopy [Russian translation], Mir (1968).Google Scholar
  2. 2.
    A. I. Brodskii, V. D. Pokhodenko, and V. S. Kuts, Usp. Khim.,39, 753 (1970).Google Scholar
  3. 3.
    E. D. Becker and U. Liddel, J. Mol. Spectr.,2, 1 (1958).Google Scholar
  4. 4.
    E. D. Becker, J. Chem. Phys.,31, 269 (1959).Google Scholar
  5. 5.
    J. C. Davis and K. Pitzer, J. Phys. Chem.,64, 1744 (1960).Google Scholar
  6. 6.
    C. M. Huggins and G. G. Pimental, J. Phys. Chem.,60, 1311 (1956).Google Scholar
  7. 7.
    U. Liddel and E. D. Becker, Spectrochim. Acta,10, 70 (1957).Google Scholar
  8. 8.
    M. Maguire and R. West, Spectrochim. Acta,17, 369 (1961).Google Scholar
  9. 9.
    E. D. Becker, Spectrochim. Acta,17, 436 (1961).Google Scholar
  10. 10.
    A. Fletcher, J. Phys. Chem.,73, 2217 (1969).Google Scholar
  11. 11.
    M. Saunders and J. P. Hyne, J. Chem. Phys.,29, 1319 (1958);31, 270 (1959).Google Scholar
  12. 12.
    E. Lippert, Ber.,67, 267 (1963).Google Scholar
  13. 13.
    C. Lussan, J. Chim. Phys. et Phys.-Chim. Biol.,60, 1100 (1963).Google Scholar
  14. 14.
    M. Martin, J. Chim. Phys. et Phys.-Chim. Biol.,59, 736 (1962).Google Scholar
  15. 15.
    W. Storek and H. Kriegsmann, Ber.,72, 706 (1968).Google Scholar
  16. 16.
    V. F. Bystrov and V. P. Lezina, Opt. i Spektr.,16, 1004 (1964).Google Scholar
  17. 17.
    J. Feeney and C. M. Walker, J. Chem. Soc., 1148 (1966A).Google Scholar
  18. 18.
    T. Gramsted and E. D. Becker, J. Mol. Struct.,5, 253 (1970).Google Scholar
  19. 19.
    N. N. Shapet'ko, L. K. Vasyanina, and D. N. Shigorin, Zh. Strukt. Khim.,11, 540 (1970).Google Scholar
  20. 20.
    S. P. Kuhn, 9th European Congress on Molecular Spectroscopy, Abstracts of Papers, Madrid (1967).Google Scholar
  21. 21.
    A. Muller, J. Chem. Phys.,42, 3265 (1965).Google Scholar
  22. 22.
    N. D. Sokolov, Uspekhi Fiz. Nauk,57, 205 (1955).Google Scholar
  23. 23.
    W. Hückel, Theoretical Bases of Organic Chemistry [Russian translation], IL (1958), p. 271.Google Scholar
  24. 24.
    V. N. Lyubimov, A. F. Varenik, and A. K. Kessenikh, Zh. Strukt. Khim.,6, 694 (1966).Google Scholar
  25. 25.
    A. Weisberger, E. Proskauer, et al., Organic Solvents [Russian translation], IL (1958).Google Scholar
  26. 26.
    Yu. K. Yur'ev, Practical Studies in Organic Chemistry [in Russian], Izd-vo MGU (1961).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • Yu. S. Bogachev
    • 1
  • L. K. Vasyanina
    • 1
  • N. N. Shapet'ko
    • 1
  • V. A. Egorov
    • 1
  • T. L. Alekseeva
    • 1
  1. 1.L. Ya. Karpov Physicochemical Institute. Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRUSSR

Personalised recommendations