Skip to main content
Log in

Conclusions

  1. 1.

    Measurement of the average temperature of combustion products by photorecording of the propagation of spherical flames in rubber membranes shows that the combustion of carbon-containing mixtures may be accompanied by losses by radiation of up to half the entire heat of the reaction. For these mixtures the losses decrease with increasing thermodynamic temperature of combustion (Tb). These losses do not depend on the initial size of the membrane.

  2. 2.

    For mixtures of H2+O2+Ar, heat losses are negligible; at Tb ~2100° they reach a maximum, which is 2–2.5 times lower than for carbon-containing systems.

  3. 3.

    Calculation of the intensity of the thermal radiation of the flame gives a value 10 times lower than the experimental value. The observable losses are explained by the influence of chemiluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. B. Lewis and G. von Elbe, Combustion, Flame, and Explosions in Gases [Russian translation], Mir (1968).

  2. V. Yost, Explosions and Combustion in Gases [Russian translation], IL (1952).

  3. Ya. B. Zel'dovich, Zh. Éksperim. i Teor. Fiz.,11, 159 (1941).

    Google Scholar 

  4. A. I. Rozlovskii, Dokl. Akad. Nauk SSSR,186, 373 (1969).

    Google Scholar 

  5. Ya. B. Zel'dovich and S. B. Ratner, Zh. Éksperim. i Teoret. Fiz.,11, 170 (1941).

    Google Scholar 

  6. A. G. Istratov and V. B. Librovich, Dokl. Akad. Nauk SSSR,143, 1380 (1962).

    Google Scholar 

  7. A. I. Rozlovskii and F. B. Moshkovich, Neftekhimiya,9, 698 (1969).

    Google Scholar 

  8. F. B. Moshkovich, A. I. Rozlovskii, and R. Ya. Mushii, Dokl. Akad. Nauk SSSR,182, 626 (1968).

    Google Scholar 

  9. A. I. Rozlovskii, V. F. Zakaznov, and I. I. Strizhevskii, Zh. Fiz. Khim.,36, 2809 (1962).

    Google Scholar 

  10. H. C. Hottel, Trans. Amer. Inst. Chem. Eng.,31, 517 (1935);38, 531 (1942); Trans. Amer. Soc. Mech. Eng.,57, 463 (1935);63, 297 (1941).

    Google Scholar 

  11. E. Schmidt, Forsch. Geb. Ingenierwesens,3, 57 (1932).

    Google Scholar 

  12. E. Eckert, Beilag z. Forsch. Geb. Ingenierwesens, Ausg. B, 8, Forschungsheft 387 (1937).

  13. H. C. Hottel and F. P. Broughton, Industr. and Engng. Chem. Analyt. Ed.,4, 166 (1932).

    Google Scholar 

  14. A. Goldman and U. P. Oppenheim, J. Opt. Soc. America,55, 794 (1965).

    Google Scholar 

  15. A. G. Blokh, Fundamentals of Heat Exchange by Radiation [in Russian], Gosénergoizdat (1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1011–1017, May, 1972.

The chromatographic determination of the composition of the fuel was performed by V. V. Pomazanov, to whom the authors would like to express their gratitude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozlovskii, A.I., Khasanov, V.G. & Gimatdinov, R.K. The thermal system of a spherical flame. Russ Chem Bull 21, 968–973 (1972). https://doi.org/10.1007/BF00853749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00853749

Keywords

Navigation