Skip to main content
Log in

Mechanism of the destruction of polyacetals in solutions of acids

Communication 3. Mechanism of the hydrolysis of cellobiose in aqueous solutions of sulfuric acid

  • Published:
Bulletin of the Academy of Sciences of the USSR, Division of chemical science Aims and scope

Conclusions

  1. 1.

    The kinetic principles of the hydrolysis of d-cellobiose were investigated in a broad range of temperatures and H2SO4 concentrations by a polarimetric method.

  2. 2.

    In H2SO4 solutions, the concentration of which is below 50%, the hydrolysis product of d-cellobiose-d-glucose is stable (it is the final product). When the concentration of the H2SO4 solution is more than 50%, d-glucose undergoes complex chemical conversions in the solution.

  3. 3.

    A scheme of the process is proposed, according to which cellobiose is hydrolyzed to glucose; the latter is converted to an intermediate optically active product, which then decomposes to optically inactive substances.

  4. 4.

    The rate constants of the hydrolysis of cellobiose were calculated with an analog computer.

  5. 5.

    The effective rate constants of the hydrolysis of cellobiose are described by an equation corresponding both to bi- and to monomolecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. A. Khalturinskii, Yu. V. Moiseev, G. E. Zaikov, V. S. Marevtsev, and G. A. Kogan, Izv. Akad. Nauk SSSR, Ser. Khim., 1785 (1970).

  2. N. A. Khalturinskii, Yu. V. Moiseev, and G. E. Zaikov, Izv. Akad. Nauk SSSR, Ser. Khim., 2686 (1970).

  3. K. Freudenberg and W. Kuhn, Ber.,68, 2070 (1935).

    Google Scholar 

  4. K. Freudenberg and W. Kuhn, Ber.,63, 1510 (1930).

    Google Scholar 

  5. G. N. La Diega, Chemica et Industria,41, 5 (1959).

    Google Scholar 

  6. R. Senju, J. Agric. Chem. Soc., Japan,25, 227 (1951–1952).

    Google Scholar 

  7. Z. A. Rogovin and A. A. Konkin, Reports of the Seventh Conference on High-Molecular Compounds [in Russian], Izd-vo AN SSSR (1952), p. 140.

  8. A. Meller, J. Polymer Sci.,2, 1024 (1964).

    Google Scholar 

  9. L. I. Novikova and A. A. Konkin, Zh. Prikl. Khim.,32, 1105 (1959).

    Google Scholar 

  10. Mary L. Nelson, J. Polymer Sci.,43, 351 (1960).

    Google Scholar 

  11. A. Sharpless, Trans. Faraday Soc.53, 1003 (1957).

    Google Scholar 

  12. E. Kalges, Liebigs. Ann. Chem.,520, 71 (1935).

    Google Scholar 

  13. R. Senju and M. Shimzu, J. Agric. Chem. Soc., Japan,25, 231 (1951).

    Google Scholar 

  14. M. I. Vinnik, Uspekhi Khimii,35, 1922 (1966).

    Google Scholar 

  15. The Chemist's Handbook [in Russian], Vol. 3, Khimiya, Moscow-Leningrad (1964), p. 333.

  16. M. I. Vinnik, I. M. Medvedskaya, L. R. Andreeva, and A. E. Tiger, Zh. Fiz. Khimii,41, 252 (1967).

    Google Scholar 

  17. C. A. Bunton and I. B. Ley, J. Chem. Soc., 2327 (1957).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2664–2671, December, 1971.

The authors are grateful to N. M. Émanuél' for his interest in the work and to M. Brin for his aid in the work on the analog computer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalturinskii, N.A., Moiseev, Y.V., Vinnik, M.I. et al. Mechanism of the destruction of polyacetals in solutions of acids. Russ Chem Bull 20, 2530–2535 (1971). https://doi.org/10.1007/BF00853617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00853617

Keywords

Navigation