An equation of state for dense nitrogen

  • V. F. Anisichkin
Article

Abstract

An empirical equation of state for nitrogen at high pressure and density is considered. It is shown that for nitrogen at densities greater than 0.6 g/cm3, by using available data [1–3] on static compression of gaseous nitrogen and shock compression of liquid nitrogen, it is possible to construct a Mie-Grüneisen type equation of state which gives a pressuredensity relationship close to experiment along the shock adiabat of liquid nitrogen and agrees with the calculations of other authors for temperature values beyond the shock-wave front [2–3]. Heat capacity, entropy, and Grüneisen coefficient values beyond the shock-wave front in liquid nitrogen are calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. S. Tsiklis and E. V. Polyakov, “Measurement of gas compressibility by the displacement method. Compressibility of nitrogen at pressures up to 10,000 atm and temperatures to 400 °,” Dokl. Akad. Nauk SSSR,176, No. 2, 308 (1967).Google Scholar
  2. 2.
    V. N. Zubarev and G. S. Telegin, “Shock compressibility of liquid nitrogen and solid carbon dioxide,” Dokl. Akad. Nauk SSSR,142, No. 2, 309 (1962).Google Scholar
  3. 3.
    Richard D. Dick, “Shock compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen,” J. Chem. Phys.,52, No. 12, 6021 (1970).Google Scholar
  4. 4.
    N. A. Zykov and R. M. Sevast'yanov, “Materials for computation of gasdynamic apparatus with high nitrogen braking parameters,” Tr. TsAGI, No. 1329 (1971).Google Scholar
  5. 5.
    J. O. Hirschfelder, C.F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley (1964).Google Scholar
  6. 6.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  7. 7.
    V. N. Nikolaevskii (editor), High-Speed Shock Phenomena [Russian translation], Mir, Moscow (1973).Google Scholar
  8. 8.
    V. N. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressures and Temperatures [in Russian], Nauka, Moscow (1968).Google Scholar
  9. 9.
    L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, “Equations of state for aluminum, copper, and lead in the high-pressure region,” Zh. Éksp. i Teor. Fiz.,38, No. 3, 790 (1960).Google Scholar
  10. 10.
    G. A. Gurtman, J. W. Kirsch, and C. R. Hastings, “Analytical equations of state for water compressed to 300 kbar,” J. Appl. Phys.,42, No. 2, 851 (1971).Google Scholar
  11. 11.
    L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Nauka, Moscow (1964).Google Scholar
  12. 12.
    R. B. Scott, Low-Temperature Techniques [Russian translation], Inostr. Lit., Moscow (1962).Google Scholar
  13. 13.
    V. M. Titov and V. V. Silvestrov, “Generation of high-velocity flows by rarefaction of shock-compressed liquid gases,” in: Ninth International Shock Tube Symposium, Stanford (1973).Google Scholar
  14. 14.
    M. Van Thiel and B. J. Alder, “Shock compression of argon,” J. Chem. Phys.,44, No. 3, 1056 (1966).Google Scholar
  15. 15.
    M. Van Thiel, M. Ross, B. L. Hord, A. C. Mitchell, W. H. Gust, M. J. D'Addario, R. N. Keeler, and K. Boutwell, “Shock-wave compression of liquid deuterium to 0.9 mbar,” Phys. Rev. Lett.,31, No. 16, 979 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. F. Anisichkin
    • 1
  1. 1.Moscow

Personalised recommendations