Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 63, Issue 5, pp 1091–1105 | Cite as

Specific features of structure formation of synthetic hard tool materials in the SHS compacting process

  • E. A. Levashov
  • Yu. V. Bogatov
  • A. S. Rogachev
  • A. N. Pityulin
  • I. P. Borovinskaya
  • A. G. Merzhanov
Article

Abstract

The basic specific features of structure formation and properties of a number of transient metal carbide and boride-base alloys produced by self-propagating high-temperature synthesis (SHS) of compact uniform compositions and synthetic gradient materials are considered. The main effects of the ultrasonic field on SHS compacting are emphasized. Ultrasonic oscillations are one of the effective means of controlling the structure of hard alloy materials.

Keywords

Carbide Structure Formation Effective Means Hard Alloy Tool Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. G. Merzhanov, A. S. Rogachev, A. S. Mukas'yan, and B. M. Khusid, Fiz. Goreniya Vzryva,26, No. 1, 104–114 (1990).Google Scholar
  2. 2.
    A. S. Rogachev, V. M. Shkiro, I. D. Chausskaya, et al., Fiz. Goreniya Vzryva,24, No. 6, 88–92 (1988).Google Scholar
  3. 3.
    A. S. Rogachev, Yu. A. Galchenko, Z. G. Aslamazoshvili, and A. N. Pityulin, Izv. Akad, Nauk SSSR, Neorg. Mater.,22, 1842–1844 (1986).Google Scholar
  4. 4.
    S. S. Ordan'yan, V. I. Undrod, and A. I. Avgustinik, Porosk. Metall., No. 9, 40–46 (1975).Google Scholar
  5. 5.
    V. A. Shcherbakov and A. N. Pityulin, Fiz. Goreniya Vzryva,19, No. 5, 24–28 (1983).Google Scholar
  6. 6.
    A. G. Merzhanov, “Self-propagating high-temperature synthesis: twenty years of searches and findings,” Preprint of ISM AN SSSR, Chernogolovka (1986).Google Scholar
  7. 7.
    E. A. Levashov, I. P. Borovinskaya, Yu. V. Bogatov et al., “Specific features of the structure formation under SHS compacting of combustion products of the TiC-C-B system,” Preprint of ISM AN SSSR, Chernogolovka (1990).Google Scholar
  8. 8.
    S. S. Kiparisov, Yu. V. Levinskii, and Yu. V. Petrov, Titanium Carbide. Fabrication, Properties, Application [in Russian], Moscow (1987).Google Scholar
  9. 9.
    Inventor's Certificate. USSR. MKI C22C 29/00.Google Scholar
  10. 10.
    D. Moskowitz and M. Humenik, Int. J. Powder Met.,14, No. 1, 207–209 (1978).Google Scholar
  11. 11.
    D. Moskowitz and M. Humenik, Modern Development in Powder Metallurgy,14, 307–320 (1981).Google Scholar
  12. 12.
    N. Narutaki and Y. Yamane, Cut. Tool Mater. Park, 319–332 (1981).Google Scholar
  13. 13.
    B. A. Arganat, A. P. Gudovich, and L. B. Nezhevenko, Ultrasound in Power Metallurgy [in Russian], Moscow (1986).Google Scholar
  14. 14.
    V. A. Andreev, E. A. Levashov, V. M. Mal'tsev, and N. N. Khavskii, Fiz. Goreniya Vzryva, No. 6, 65–69 (1987).Google Scholar
  15. 15.
    M. N. Dubrovin, E. A. Levashov, and N. N. Khavskii, All-Union Scientific-Technical Meeting “Use of Ultrasonic Technique and Technology in Mechanical Engineering,” Abstracts of Reports, Pt. 2, Moscow (1985).Google Scholar
  16. 16.
    V. M. Shkiro and I. P. Borovinskaya, Combustion Processes in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 253–258.Google Scholar
  17. 17.
    E. A. Nekrasov, Yu. M. Maksimov, M. Kh. Ziatdinov, and A. S. Shteinberg, Fiz. Goreniya Vzryva,14, No. 5, 26–32 (1978).Google Scholar
  18. 18.
    A. I. Kirdyashkin, Yu. M. Maksimov, and A. G. Merzhanov, Fiz. Goreniya Vzryva,17, No. 16, 10–15 (1981).Google Scholar
  19. 19.
    A. F. Lisovsky, Migration of Metal Melts in Sintered Composite Bodies [in Russian], Kiev (1984).Google Scholar
  20. 20.
    E. M. Trent, Cutting of Metals [Russian translation], Moscow (1980).Google Scholar
  21. 21.
    M. Nizno, N. Yatsuanagi, J. Yeuchi, et al., Method of Producing a Multilayer Ceramic-Ceramic or Ceramic-Metal Composite Having a Gradually Changing Composition, Eur. Par. EP 255954 17.02.1988, CL COUB 35/65. Appl. Jpn. 86/187379 8.08.1986.Google Scholar
  22. 22.
    N. Sata, J. Ceram. Soc. Jpn.,97, No. 6, 514–520 (1989).Google Scholar
  23. 23.
    H. Nakanishi, I. Tanaka, T. Okamoto, et al., J. Jpn. Soc. Powder Powder Met.,36, No. 6, 712–715 (1986).Google Scholar
  24. 24.
    N. Yanagisawa, N. Sata, and N. Sanada, Fabrication of TiB2-Cu Functionally Gradient Material by the SHS Process, 1st Int. Symp. FGM, Sendai (1990), pp. 179–184.Google Scholar
  25. 25.
    Y. Miyamoto, N. Nakanishi, I. Tanaka, et al., Gas Pressure Combustion Sintering of TiC-Ni, 1st Int. Symp. FGM, Sendai (1990), pp. 257–262.Google Scholar
  26. 26.
    Yi. Fu. Zhend, Run Zhang Ynan, Zheng Ling Yang, Study on the Preparation of TiB2-Al Functionally Gradient Material by the SHS Method, 1st Int. Symp. FGM, Sendai (1990), pp. 175–178.Google Scholar
  27. 27.
    J. Smithells, Metals, Handbook [Russian translation], Moscow (1980).Google Scholar
  28. 28.
    A. V. Lykov, Heat and Mass Transfer (Handbook) [in Russian], Moscow (1972).Google Scholar
  29. 29.
    G. A. Aksel'rud and M. A. Al'tshuler, An Introduction to Capillary-Chemical Technology [in Russian], Moscow (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • E. A. Levashov
  • Yu. V. Bogatov
  • A. S. Rogachev
  • A. N. Pityulin
  • I. P. Borovinskaya
  • A. G. Merzhanov

There are no affiliations available

Personalised recommendations