On the presence of critical temperatures of mixing according to the data on the dependence of the intrinsic viscosity of polyvinyltrimethylsilane on the temperature

  • F. F. Khodzhevanov
  • N. S. Nametkin
  • S. G. Durgar'yan
  • O. B. Semenov
Physical Chemistry


  1. 1.

    The influence of temperature on the viscosity of dilute solutions of polyvinyltrimethylsilane, synthesized by ionic polymerization on ethyllithium, in a number of solvents of various kinds, as well as the change in the viscosity of dilute solutions of biological macromolecules of deoxyribonucleic acid (DNA) and deoxyribonucleoprotein (DNP) during heating was investigated.

  2. 2.

    The data obtained are interpreted in accord with the theory of solutions of polymers developed by Paterson on the basis of the presence of lower and (or) upper critical temperatures of mixing in a number of polymer-solvent systems. In the case of deoxyribonucleoprotein, the anomalous threefold increase in the viscosity before the beginning of the helix-ball transition during heating is explained by dissociation of protein from DNA and an increase in the asymmetry of the molecule on account of a change in the conformation of the DNA contained in the DNP or a disruption of the supermolecular structure of the DNP itself.



Polymer Viscosity Macromolecule Critical Temperature Intrinsic Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Delmas, D. Patterson, and T. Somcynsky, J. Polymer Sci.,57, 79 (1962).Google Scholar
  2. 2.
    G. Delmas and D. Patterson, Trans. Faraday Soc.,58, 2116 (1962).Google Scholar
  3. 3.
    A. A. Tager, M. V. Tsilipotkina, and V. K. Doronina, Zh. Fiz. Khimii,33, 335 (1959).Google Scholar
  4. 4.
    J. B. Kinsinger and L. E. Ballard, J. Polymer Sci.,B2, 879 (1964).Google Scholar
  5. 5.
    P. Freeman and J. Rowlinson, Polymer,1, 20 (1959).Google Scholar
  6. 6.
    G. Allen and C. Baker, Polymer,6, 181 (1965).Google Scholar
  7. 7.
    D. Patterson and A. A. Tager, Vysokomolekul. Soed.,A9, 1814 (1967).Google Scholar
  8. 8.
    N. S. Nametkin, S. G. Durgar'yan, and V. S. Khotimskii, Vysokomolekul. Soed.,7, 185 (1965).Google Scholar
  9. 9.
    F. F. Khodzhevanov, O. B. Semenov, N. S. Nametkin, and S. G. Durgar'yan, Dokl. Akad. Nauk SSSR,186, 1336 (1969).Google Scholar
  10. 10.
    F. F. Khodzhevanov, S. G. Durgar'yan, and O. B. Semenov, Izv. Akad. Nauk SSSR, Ser. Khim., 1090 (1969).Google Scholar
  11. 11.
    The Nucleohistones, J. Bonner and P. Ts'o (editors), Holden-Day, Inc. (1964).Google Scholar
  12. 12.
    H. A. Scheraga, Ann. N. Y. Acad. Sci.,125, 253 (1965).Google Scholar
  13. 13.
    A. Mirsky and A. Pollister, J. Gen. Physiol.,30, 117 (1946).Google Scholar
  14. 14.
    G. Zubay and P. Doty, J. Mol. Biol.,1, 1 (1959).Google Scholar
  15. 15.
    E. Eigner and P. Doty, J. Mol. Biol.,12, 549 (1965).PubMedGoogle Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • F. F. Khodzhevanov
    • 1
  • N. S. Nametkin
    • 1
  • S. G. Durgar'yan
    • 1
  • O. B. Semenov
    • 1
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisAcademy of Sciences of the USSRUSSR

Personalised recommendations