Journal of Engineering Physics and Thermophysics

, Volume 63, Issue 4, pp 999–1003 | Cite as

Determination of thermophysical properties of solids at high temperatures by measuring phase characteristics of a plane temperature wave at two frequencies

  • A. G. Shashkov
  • V. A. Karolik
  • A. V. Osipchik
Article
  • 13 Downloads

Abstract

The authors propose and substantiate a procedure to determine thermal diffusivity and the ratio of integral emissive power to thermal conductivity of solids by measuring the phase delay of a plane temperature wave at two frequencies. The method is applicable for a wide range of heat loss parameters and does not need calorimetric measurements. Errors are calculated and the domains of applicability of the given procedure are pointed out.

Keywords

Thermal Conductivity Statistical Physic Thermal Diffusivity Heat Loss Thermophysical Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Filippov, Measurement of Thermophysical Properties of Substances by the Periodic Heating Method [in Russian], Moscow (1984).Google Scholar
  2. 2.
    R. D. Cowan, J. Appl. Phys.,32, No. 7, 1363–1370 (1961).Google Scholar
  3. 3.
    O. A. Kraev and A. A. Stel'makh, Investigations at High Temperatures [in Russian], Novosibirsk (1966), pp. 55–74.Google Scholar
  4. 4.
    G. I. Petrunin and R. P. Yurchak, Vestn. MGU, Ser. 3. Fiz., Astron.,12, No. 5, 613–614 (1971).Google Scholar
  5. 5.
    R. Brandt and M. Havranek, J. Non-Equil. Thermodyn., No. 3, 213–230 (1978).Google Scholar
  6. 6.
    I. G. Korshunov, A. N. Mezentsev, and V. P. Gorbatov, Teplofiz. Vys. Temp.,27, No. 1, 63–67 (1989).Google Scholar
  7. 7.
    A. N. Pozdeev, A. D. Ivliev, and V. V. Morilov, “The method of plane temperature waves as applied to investigation of heterogeneous two-layered metals,” Deposited at VINITI 22.06.89, No. 4111-89.Google Scholar
  8. 8.
    A. G. Shashkov, S. Yanovskii, and T. N. Abramenko, High Temp. High Press,16, No. 1, 93–102 (1984).Google Scholar
  9. 9.
    S. A. Il'inykh, S. G. Taluts, V. E. Zinovier, and S. P. Bautin, Teplofiz. Vys. Temp.,22, No. 4, 709–714 (1984).Google Scholar
  10. 10.
    M. Cerceo and H. Childherst, J. Appl. Phys.,34, No. 5, 1445–1449 (1963).Google Scholar
  11. 11.
    M. J. Wheeler, J. Sci. Technol.,38, No. 3, 102–107 (1971).Google Scholar
  12. 12.
    R. Brandt and G. Neuer, High Temp. High Press,11, No. 1, 59–68 (1979).Google Scholar
  13. 13.
    M. J. Wheeler, Brit. J. Appl. Phys.,16, No. 3, 365–376 (1965).Google Scholar
  14. 14.
    M. Serisawa, Jpn. J. Appl. Phys.,8, 792–796 (1969).Google Scholar
  15. 15.
    P. F. Fil'chakov, Numerical Methods of Applied Mathematics [in Russian], Kiev (1970).Google Scholar
  16. 16.
    O. A. Gerashchenko, Fundamental Principles of Heat Flow Metering [in Russian], Kiev (1971).Google Scholar
  17. 17.
    E. P. Miklashevskaya and S. D. Fedorovich, Teplofiz. Vys. Temp.,20, No. 4, 790–792 (1982).Google Scholar
  18. 18.
    V. Ya. Cherepanov, Teplofiz. Vys. Temp.,17, No. 2, 395–399 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. G. Shashkov
  • V. A. Karolik
  • A. V. Osipchik

There are no affiliations available

Personalised recommendations