Investigation of transonic unsteady-state flow in the presence of phase transformations

  • G. A. Saltanov
  • R. A. Tkalenko


Mathematical Modeling Mechanical Engineer Phase Transformation Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. Schmidt, “Beobachtung über das Verhalten der durch Wasserdampf-Kondensationausgelösten Störungen in einer Überschall-Windkanaldüse,” Dissertation, Karlsruhe (1962).Google Scholar
  2. 2.
    G. Gyarmathy, “Kondensationssto β-Diagramme für Wasserdamftrömungen,” Forsch. Ing. Wes., D, No. 4, 29 (1963).Google Scholar
  3. 3.
    D. Barschdorf, “Kurzzeitfeuchtemessung and ihre Anwendung bei Kondensationserscheinung,” in: Lavaldüsen. Strömungsmechanik und Strömungsmaschinen, No. 6, Universitat, Karlsruhe (1967).Google Scholar
  4. 4.
    J. Zierer and S. Lin, “Ein Ahunlichkeitsgesetz für instationare Kondensationvorgange in Lavaldusen,” Forsch. Ingenieurs,34, No. 1 (1968).Google Scholar
  5. 5.
    D. Barschdorf and G. A. Filippov, “Analysis of special conditions of the work of Laval nozzles with local supply of heat,” Izv. Akad. Nauk SSSR Énergetika Transport, No. 3 (1970).Google Scholar
  6. 6.
    G. A. Saltanov, Supersonic Two-Phase Flows [in Russian], Izd. Vysshaya Shkola, Minsk (1972).Google Scholar
  7. 7.
    A. Pouring, “Thermal choking and condensation in nozzles,” Phys. Fluids,8, No. 10 (1965).Google Scholar
  8. 8.
    F. Yosif, B. Campbel, and F. Bakhtar, “Instability in condensing flow of steam,” Proc. Inst. Mech. Eng.,186, No. 37 (1972).Google Scholar
  9. 9.
    P. Wegener and D. Gaglistro, “Periodic nozzle flow with heat addition,” Combust. Sci. Technol.,6, No. 5 (1973).Google Scholar
  10. 10.
    S. K. Godunov, “Difference method for numerical calculation of discontinuous solutions of the equations of gasdynamics,” Mat. Sb.,47, No. 3 (1959).Google Scholar
  11. 11.
    M. Ya. Ivanov and A. N. Kraiko, “Numerical solution of the direct problem of mixed flow in nozzles;” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1969).Google Scholar
  12. 12.
    A. N. Kraiko and A. A. Osipov, “Investigation of the reflection of perturbations from the subsonic part of a Laval nozzle,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1 (1973).Google Scholar
  13. 13.
    J. Anderson, “Time-dependent solutions of nonequilibrium nozzle flows,” A. sequel, AIAA J.,8, No. 12 (1970).Google Scholar
  14. 14.
    I. M. Vesenin and A. D. Rychkov, “Numerical solution of the problem of the flow of a mixture of a gas and particles in an axisymmetric Laval nozzle,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1973).Google Scholar
  15. 15.
    R. A. Tkalenko, “Spontaneous condensation with the flow of a supersonic stream around a convex corner,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1970).Google Scholar
  16. 16.
    R. A. Tkalenko, “Condensation of water vapors with expansion in flat and axisymmetric nozzles,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1972).Google Scholar
  17. 17.
    Ya. I. Frenkel', The Kinetic Theory of Liquids [in Russian], Vol. 3, Izd. Nauka, Moscow (1959).Google Scholar
  18. 18.
    P. Hill, “Condensation of water vapor during supersonic expansion in nozzles,” J. Fluid Mech.,25, No. 3 (1966).Google Scholar
  19. 19.
    A. V. Kurshakov, G. A. Saltanov, and R. A. Tkalenko, “Theoretical and experimental investigation of condensation in a centered rarefaction wave,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1971).Google Scholar
  20. 20.
    R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Wiley (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • G. A. Saltanov
    • 1
  • R. A. Tkalenko
    • 1
  1. 1.Moscow

Personalised recommendations