Journal of Engineering Physics and Thermophysics

, Volume 63, Issue 3, pp 853–862 | Cite as

Heat transfer in film boiling on a horizontal surface

  • V. S. Granovskii
  • A. A. Sulatskii
  • V. B. Khabenskii
  • S. M. Shmelev


Film boiling of a saturated liquid on a horizontal surface facing upwards is considered. An expression for the complex, determining the heat transfer rate, is obtained from the condition of interface stability loss; the relation is finalized by generalizing the experimental data. Two different mechanisms of bubble generation on the surface of a vapor film which account for the character of the derived relation are analyzed.


Experimental Data Heat Transfer Statistical Physic Transfer Rate Heat Transfer Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Berenson, Teploperedacha,83, No. 3, 152–161 (1961).Google Scholar
  2. 2.
    T. H. K. Frederking, Y. S. Wu, and B. W. Clement, AICHI J.,12, No. 2, 238–244 (1966).Google Scholar
  3. 3.
    T. D. Hamill and K. J. Baumeister, in: Proc. 3rd Int. Heat Transfer Conf., Chicago (1966), Vol. 4, pp. 59–65.Google Scholar
  4. 4.
    E. Ruckenstein, Int. J. Heat Mass Trans.,10, 911–919 (1967).Google Scholar
  5. 5.
    Y. J. Lao, R. E. Barry, and R. E. Balzhiser, in: Proc. 4th Int. heat Transfer Conf., Paris (1970), Vol. 5, No. 3, p. 10.Google Scholar
  6. 6.
    V. V. Klimenko, Int. J. Heat Mass Trans.,24, No. 1, 69–79 (1981).Google Scholar
  7. 7.
    Y. P. Chang, Trans. ASME,81, No. 1, 1–12 (1959).Google Scholar
  8. 8.
    D. Clark, in: Advances of Heat Transfer [Russian translation], Moscow (1971), pp. 361–567.Google Scholar
  9. 9.
    G. A. Dreitser, V. I. Panevin, and V. P. Firsov, in: Thermophysics and Hydrodynamics of Boiling and Condensation Processes, 2nd All-Union Conf. [in Russian], Riga (1988), pp. 61–63.Google Scholar
  10. 10.
    V. S. Granovskii, V. B. Khabenskii, and S. M. Shmelev, Inzh.-Fiz. Zh.,58, No. 6, 893–899 (1990).Google Scholar
  11. 11.
    D. P. Jordan, Advances of Heat Transfer [Russian translation], Moscow (1971), pp. 68–143.Google Scholar
  12. 12.
    S. S. Kutateladze and V. E. Nakoryakov, Heat and Mass Transfer and Waves in Gas-Liquid Systems [in Russian], Novosibirsk (1984).Google Scholar
  13. 13.
    C. R. Class, J. R. De Haan, M. Piccone, and R. B. Cost, Adv. Cryogen. Eng.,5, 254–261 (1960).Google Scholar
  14. 14.
    P. J. Berenson, Int. J. Heat Mass Trans.,5, 985–999 (1962).Google Scholar
  15. 15.
    Hosler and Westwater, Raketn. Tekh., No. 4, 43–50 (1962).Google Scholar
  16. 16.
    P. C. Wayner and S. C. Bankoff, AICHE J.,11, 59–61 (1965).Google Scholar
  17. 17.
    R. D. Cummings and J. L. Smith, Liquid Helium Technology, Oxford (1966), pp. 85–95.Google Scholar
  18. 18.
    His and Costello, Konstr. Tekhnol. Mashinostr.,88, No. 1, 11–19 (1966).Google Scholar
  19. 19.
    D. E. Kautzky and J. W. Westwater, Int. J. Heat Mass Trans.,10, 253–256 (1967).Google Scholar
  20. 20.
    H. J. Sauer and K. M. Ragsdell, Adv. Cryogen. Eng.,17, 412–415 (1971).Google Scholar
  21. 21.
    V. M. Zhukov, G. M. Kazakov, S. A. Kovalev, and Ya. A. Kuzma-Kichta, in: Heat Transfer and Physical Hydrodynamics [in Russian], Moscow (1974), pp. 116–129.Google Scholar
  22. 22.
    V. I. Deev, V. E. Keilin, I. A. Kovalev, A. K. Kondratenko, and V. I. Petrovichev, Cryogenics,17, No. 10, 557–562 (1977).Google Scholar
  23. 23.
    V. A. Grigoriev, V. V. Klimenko, Yu. M. Pavlov, E. V. Ametistov, and A. V. Klimenko, Cryogenics,17, 155–156 (1977).Google Scholar
  24. 24.
    W. Peyayopanakul and J. W. Westwater, Int. J. Heat Mass Trans.,21, 1437–1445 (1978).Google Scholar
  25. 25.
    Yu. M. Pavlov, S. A. Potekhin, and A. V. Paramonov, Tr. Mosk. Énerg. Inst. Issue 427, 10–15 (1979).Google Scholar
  26. 26.
    A. G. Shelepen' and V. V. Klimenko, Tr. Mosk. Énerg. Inst., Issue 278, 15–25 (1980).Google Scholar
  27. 27.
    V. V. Klimenko and A. G. Shelepen', Int. J. Heat Mass Trans.,25, No. 10, 1611–1613 (1982).Google Scholar
  28. 28.
    D. N. Lyon, Adv. Cryogen. Eng.,10, Pt. 2, 371–379 (1965).Google Scholar
  29. 29.
    H. Ogata and W. Nakayama, Adv. Cryogen. Eng.,27, 309–317 (1982).Google Scholar
  30. 30.
    S. A. Potekhin, V. A. Shugaev, and V. I. Babich, Tr. Mosk. Énerg. Inst., Issue 589, 31–38 (1982).Google Scholar
  31. 31.
    Ramilison and Londhard, J. Heat Trans., No. 3, 224–234 (1988).Google Scholar
  32. 32.
    M. R. Duignan, G. A. Greene, T. F. Irvine, Int. Comm. Heat Mass Trans.16, 355–366 (1989).Google Scholar
  33. 33.
    G. Wallis, One-Dimensional Two-Phase Flows [Russian translation], Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. S. Granovskii
  • A. A. Sulatskii
  • V. B. Khabenskii
  • S. M. Shmelev

There are no affiliations available

Personalised recommendations