Advertisement

Technical stability in a straight pipeline containing a flowing liquid

  • K. S. Matviichuk
Article
  • 25 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Flowing Liquid Technical Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. G. Chetaev, Stability of Motion; Papers on Analytical Mechanics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  2. 2.
    K. A. Karacharov and A. G. Pilyutik, Introduction to the Technical Theory of Motion Stability [in Russian], Fizmatgiz, Moscow (1972).Google Scholar
  3. 3.
    F. D. Bairamov, “Technical stability in a system having distributed parameters subject to constantly acting perturbations,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 2 (1974).Google Scholar
  4. 4.
    T. K. Sirazetdinov, “The Lyapunov-function method in researching processes with after effects,” in: A Direct Method with Applications in Stability Theory [in Russian], Nauka, Novosibirsk (1981).Google Scholar
  5. 5.
    N. F. Kirichenko, Some Aspects of Motion Stability and Controllability [in Russian], Izd. Kiev. Univ., Kiev (1972).Google Scholar
  6. 6.
    K. S. Matviichuk, “Notes on the comparison method for a differential-equation system with rapidly rotating phase,” Ukr. Mat. Zh.,34, No. 4 (1982).Google Scholar
  7. 7.
    K. S. Matviichuk, “A comparison principle for the equation for a system of coupled bodies containing damping components,” Ukr. Mat. Zh.,34, No. 5 (1982).Google Scholar
  8. 8.
    K. S. Matviichuk, “Technical stability in a system of coupled bodies containing damping components,” Prikl. Mekh.,19, No. 5 (1983).Google Scholar
  9. 9.
    K. S. Matviichuk, “The comparison method for differential equations close to hyperbolic,” Differents. Uravn.,20, No. 11 (1984).Google Scholar
  10. 10.
    K. S. Matviichuk, “Technical stability in certain distributed-parameter systems,” Prikl. Mekh.,21, No. 8 (1985).Google Scholar
  11. 11.
    K. S. Matviichuk, “Technical stability in a dynamic system containing slow and fast motions,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 2 (1986).Google Scholar
  12. 12.
    K. S. Matviichuk, “Inequalities for solving some nonlinear partial differential equations,” Mat. Fiz. Nelinein. Mekh., No. 5 (39) (1986).Google Scholar
  13. 13.
    K. S. Matviichuk, “Technical stability in parametrically excited distributed processes,” Prikl. Mat. Mekh.,50, No. 2 (1986).Google Scholar
  14. 14.
    K. S. Matviichuk, “The stability of a rectilinear pipeline containing a flowing liquid,” in: Problems in Pipeline Transport for Oil and Gas: Abstracts for the All-Union Conference, Ivano-Frankovsk (1985).Google Scholar
  15. 15.
    K. S. Matviichuk, “Stability conditions for nonlinear parametrically excited distributed processes,” Vychisl. Prikl. Mat., No. 58 (1986).Google Scholar
  16. 16.
    K. S. Matviichuk, “Technical stability in nonlinear parametrically excited distributed processes,” Differents. Uravn.,22, No. 11 (1986).Google Scholar
  17. 17.
    K. S. Matviichuk, “Conditions for technical stability in a nonlinear evolving system,” Vychisl. Prikl. Mat., No. 66 (1988).Google Scholar
  18. 18.
    K. S. Matviichuk, “Technical stability in parametrically excited distributed processes,” Mat. Metody Fiz.-Mekh. Polya, No. 26 (1987).Google Scholar
  19. 19.
    V. I. Feodos'ev, “Oscillations and stability in a tube containing a flowing liquid,” Inzh. Sb.,10 (1951).Google Scholar
  20. 20.
    A. A. Movchan, “A stability problem for a tube containing a flowing liquid,” Prikl. Mat. Mekh.,29, No. 4 (1965).Google Scholar
  21. 21.
    V. A. Svetlitskii, The Mechanics of Pipelines and Hoses [in Russian], Mashinostroenie, Moscow (1982).Google Scholar
  22. 22.
    R. A. Stein and M. V. Tobriner, “Oscillations in a tube containing a flowing liquid,” Prikl. Mekh., No. 4 (1970).Google Scholar
  23. 23.
    V. Ya. Skorobogat'ko, Researches on the Qualitative Theory of Partial Differential Equations [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  24. 24.
    V. V. Vlasov, General Shell Theory with Applications in Engineering [in Russian], Gostekhizdat, Moscow-Leningrad (1949).Google Scholar
  25. 25.
    V. I. Zubov, Lyapunov's Methods and Their Applications [in Russian], Izd. LGU, Leningrad (1957).Google Scholar
  26. 26.
    K. G. Valeev and G. S. Finin, Constructing Lyapunov Functions [in Russian], Naukova, Dumka, Kiev (1981).Google Scholar
  27. 27.
    H. Leipholz, Stability of Elastic Systems, Sijthoff et Noordhoff, Alphen aan den Rijn (1980).Google Scholar
  28. 28.
    J. Szarski, Differential Inequalities, PVN, Warsaw (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • K. S. Matviichuk
    • 1
  1. 1.Kiev

Personalised recommendations