Structure of shock waves in porous iron at low pressures

  • V. N. Aptukov
  • P. K. Nikolaev
  • V. I. Romanchenko


Iron Mathematical Modeling Shock Wave Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. V. Romanov, V. F. Nesterenko, and I. M. Pikus, “Effect of the size of powder particles on the process of explosive pressing,” Fiz. Goreniya Vzryva, No. 5 (1979).Google Scholar
  2. 2.
    V. Harriman, “Governing equations of porous materials undergoing compaction,” in: Problems of the Theory of Plasticity/Mechanics. New Developments in Foreign Science [Russian translation], Vol. 7, Mir, Moscow (1976).Google Scholar
  3. 3.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    S. B. Kormer, A. I. Funtikov, et al., “Dynamic compression of porous metals,” Zh. Éksp. Teor. Fiz.,42, No. 3 (1962).Google Scholar
  5. 5.
    S. S. Grigoryan, “Basic concepts of soil dynamics,” Prikl. Mat. Mekh.,24, No. 6 (1960).Google Scholar
  6. 6.
    S. Z. Dunin, V. K. Sirotkin, and V. V. Surkov, “Propagation of plastic waves in porous bodies,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1978).Google Scholar
  7. 7.
    G. M. Lyakhov, Waves in Soils and Porous Multicomponent Media [in Russian], Nauka, Moscow (1982).Google Scholar
  8. 8.
    R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1982).Google Scholar
  9. 9.
    A. F. Ovchinnikov, V. I. Pusev, and A. P. Gusarov, “Behavior of porous metals during compaction,” in: Mechanics of Impulsive Processes [in Russian], MVTU, Moscow (1983).Google Scholar
  10. 10.
    M. M. Carrol and A. C. Holt, “State and dynamic pore-collapse relations for ductile porous materials,” J. Appl. Phys.,43, No. 4 (1972).Google Scholar
  11. 11.
    A. A. Il'yushin, Continuum Mechanics [in Russian], Izd. MGU, Moscow (1978).Google Scholar
  12. 12.
    V. N. Aptukov, “Governing equation of the thermoelastic behavior and fracture of solids with small strains,” in: Thermodynamics of the Deformation and Fracture of Solids with Microcracks [in Russian], UNTs (Ural Science Center) AN SSSR, Sverdlovsk (1982).Google Scholar
  13. 13.
    V. N. Aptukov and T. I. Kligman, “Nonlinear effects of an elastic medium with damages,” in: Boundary-Value Problems of Elastic and Inelastic Systems [in Russian], UNTs AN SSSR, Sverdlovsk (1985).Google Scholar
  14. 14.
    V. N. Aptukov, “Model of a damaged thermoelastoviscoplastic medium: application to cleavage fracture,” Fiz. Goreniya Vzryva, No. 2 (1986).Google Scholar
  15. 15.
    W. Nowacki, Wave Problems of the Theory.of Plasticity [Russian translation], Mir, Moscow (1978).Google Scholar
  16. 16.
    V. I. Romanchenko and G. V. Stepanov, “Dependence of critical stresses on time-dependent load parameters in the cleavage of copper, aluminum, and steel,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1980).Google Scholar
  17. 17.
    A. M. Staver, V. M. Fomin, and P. A. Cheskidov, “Structure of strong shock waves in powders,” Transactions of the VIII All-Union Conference on Numerical Methods of Solving Problems of the Theory of Elasticity and Plasticity, ITPM SO AN SSSR (Institute of Theoretical and Applied Mechanics, Siberian Branch, Academy of Sciences of the USSR), Novosibirsk (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. N. Aptukov
    • 1
  • P. K. Nikolaev
    • 1
  • V. I. Romanchenko
    • 1
  1. 1.Perm'

Personalised recommendations