Initial phase of developing dynamic perturbations in a nonlinearly heat conducting gas

  • A. S. Romanov
  • A. A. Stytsyna


Mathematical Modeling Mechanical Engineer Heat Conducting Initial Phase Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967).Google Scholar
  2. 2.
    V. P. Shidlovskii, “Evolution of dynamic perturbations at the initial phase of point discontinuity in a heat conducting gas,” Prikl. Mekh. Tekh. Fiz., No. 1 (1978).Google Scholar
  3. 3.
    Ya. B. Zel'dovich and A. S. Kompaneets, “The theory of heat distribution for a temperature-dependent heat conductivity,” in: A. F. loffe's 70th Birthday [in Russian], Izd. Akad. Nauk SSSR, Moscow (1950).Google Scholar
  4. 4.
    O. A. Oleinik, A. S. Kalashnikov, and Yui-Lin' Chou, “Cauchy problems and boundary-value problems for equations of the type of nonstationary filtration,” Izv. Akad. Nauk SSSR, Ser. Mat.,22, No. 5 (1958).Google Scholar
  5. 5.
    L. D. Pokrovskii and S. N. Taranenko, “Features of wave propagation in gas dynamics with nonlinear heat conduction,” Tr. MVTU, No. 374 (1982).Google Scholar
  6. 6.
    W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience, New York (1965).Google Scholar
  7. 7.
    A. B. Vasil'eva and V. F. Butuzov, Asymptotic Expansions of Solutions of Singular Perturbation Equations [in Russian], Nauka, Moscow (1973).Google Scholar
  8. 8.
    P. P. Volosevich, S. P. Kurdyumov, et al., “Solution of the one-dimensional planar problem of piston motion in an ideal heat conducting gas,” Zh. Vychisl Mat. Mat. Fiz-, No. 1 (1963).Google Scholar
  9. 9.
    S. Lefschetz, Differential Equations: Geometric Theory, Interscience, New York (1963).Google Scholar
  10. 10.
    T. Poston and I. Stewart, Catastrophe Theory and Its Applications, Pitman, London (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. S. Romanov
    • 1
  • A. A. Stytsyna
    • 1
  1. 1.Moscow

Personalised recommendations