Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 33, Issue 5, pp 705–712 | Cite as

Technical stability of the dynamic states of an extended rod with a variable cross section, moving longitudinally in a fluid

  • K. S. Matviichuk
Article
  • 20 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Dynamic State Variable Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Cowler, Nonlinear Mechanics [Russian translation], Izd. IL, Moscow (1961).Google Scholar
  2. 2.
    Ya. F. Kayuk and G. A. Kil'chinskaya, “Elasticity relations of the nonlinear theory of long cylindrical shells under thermomechanical deformation,” Prikl. Mekh.,21, No. 11 (1985).Google Scholar
  3. 3.
    F. D. Bairamov, “Technical stability of systems with distributed parameters under constantly acting perturbations,” Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., No. 2 (1974).Google Scholar
  4. 4.
    V. I. Zubov, Lectures on Control Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  5. 5.
    N. F. Kirichenko, Some Stability Problems in the Controllability of Motion [in Russian], Izd. Kiev. Univ., Kiev (1972).Google Scholar
  6. 6.
    K. S. Matviichuk, “Technical stability of parametrically excited distributed processes,” Prikl. Mat. Mekh.,50, No. 2 (1986).Google Scholar
  7. 7.
    K. S. Matviichuk, “Technical stability of nonlinear parametrically excited distributed processes,” Differents. Uravn.,22, No. 11 (1986).Google Scholar
  8. 8.
    T. K. Sirazetdinov, “The method of Lyapunov functions in the study of some properties of processes with aftereffect,” in: Application of the Direct Method in Stability Theory [in Russian], Nauka, Novosibirsk (1981).Google Scholar
  9. 9.
    V. Ya. Skorobogat'ko, Studies on the Qualitative Theory of Differential Equations with Partial Derivatives [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  10. 10.
    H. Leipholz, Stability of Elastic Systems, Sijthoff and Noordhoff, Alphen aan Rijn, Netherlands (1980).Google Scholar
  11. 11.
    J. Szarski, Differential Inequalities, PWN, Warsaw (1967).Google Scholar
  12. 12.
    V. A. Svetlitskii, Mechanics of Piping and Hoses. Problems of the Interaction of Rods with a Stream of Fluid or Air [in Russian], Mashinostroenie, Moscow (1982).Google Scholar
  13. 13.
    E. N. Pantov, N. N. Makhin, and B. B. Sheremetov, Fundamentals of the Theory of Submersibles [in Russian], Sudostroenie, Leningrad (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • K. S. Matviichuk
    • 1
  1. 1.Kiev

Personalised recommendations