Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 33, Issue 5, pp 668–675 | Cite as

Effect of wall curvature with wavy downflow of a thin layer of viscous liquid

  • Yu. Ya. Trifonov
Article
  • 21 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Thin Layer Industrial Mathematic Viscous Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, “Wave formation on a vertical falling liquid film,” AIChE J.,31, No. 9 (1985).Google Scholar
  2. 2.
    V. E. Nakoryakov, S. V. Alekseenko, B. G. Pokusaev, and V. V. Orlov, “Instantaneous velocity profile in a wavy film of liquid,” Inzh. Fiz. Zh.,13, No. 3 (1977).Google Scholar
  3. 3.
    P. Bach and J. Villadsen, “Simulation of the vertical flow of a thin wavy film using a finite-element method,” Int. J. Heat Mass Transfer,27, No. 5 (1984).Google Scholar
  4. 4.
    Yu. Ya. Trifonov and O. Yu. Tsvelodub, “Nonlinear waves in the surface of a liquid film falling over a vertical wall,” Prikl. Mekh. Tekh. Fiz., No. 5 (1985).Google Scholar
  5. 5.
    Yu. Ya. Trifonov and O. Yu. Tsvelodub, “Stationary two-dimensional waves in a vertical falling film of liquid and their stability,” Inzh. Fiz. Zh.,54, No. 1 (1988).Google Scholar
  6. 6.
    E. A. Demekhin and V. Ya. Shkadov, “Two dimensional wave regimes for a thin layer of viscous liquid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza., No. 3 (1986).Google Scholar
  7. 7.
    V. E. Nakoryakov, B. G. Pokusaev, and S. V. Alekseenko, “Desorption of weakly soluble gas from falling wavy liquid films,” in: Calculation of Heat Transfer in Energy-Chemical Processes [in Russian], IT SO Akad. Nauk. SSSR, Novosibirsk (1981).Google Scholar
  8. 8.
    V. Ya. Shkadov, “Wave regimes for flow of a thin film of viscous liquid under the action of the force of gravity,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza., No. 1 (1967).Google Scholar
  9. 9.
    E. A. Demekhin, M. A. Kaplan, and R. A. Foigel1, “Nonlinear waves in a falling viscous layer of magnetic liquid,” Magn. Gidrodin., No. 1 (1988).Google Scholar
  10. 10.
    S. P. Lin and W. C. Liu, “Instability of film coating of wires and tubes,” AIChE J.,21, No. 4 (1975).Google Scholar
  11. 11.
    P. L. Kapitsa and S. P. Kapitsa, “Wave flow of thin layers of viscous liquid,” Zh. Éksp. Teor. Fiz.,19, No. 2 (1949).Google Scholar
  12. 12.
    V. Ya. Shkadov, “Solitary waves in a layer of viscous liquid,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza., No. 1 (1977).Google Scholar
  13. 13.
    A. V. Bunov, E. A. Demekhin, and V. Ya. Shkadov, “Nonidentical nature of a nonlinear wave regimes in a viscous layer,” Prikl. Mat. Mekh.,48, No. 4 (1984).Google Scholar
  14. 14.
    Yu. Ya. Trifonov and O. Yu. Tsvelodub, “Branching of steady-state traveling wave regimes for a viscous film of liquid,” Prikl. Mekh. Tekh. Fiz., No. 4 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yu. Ya. Trifonov
    • 1
  1. 1.Novosibirsk

Personalised recommendations