Journal of Applied Mechanics and Technical Physics

, Volume 33, Issue 5, pp 658–662 | Cite as

Two-dimensional stokes flow of a viscous fluid with a free boundary under the effect of capillary forces

  • S. A. Chivilikhin
Article
  • 29 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Free Boundary Viscous Fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Kluwer, Boston (1983).Google Scholar
  2. 2.
    Ya. I. Frenkel', “Viscous flow in crystalline materials,” Zh. Éksp. Teor. Fiz.,16, No. 1 (1946).Google Scholar
  3. 3.
    G. W. Scherer, “Sintering of low-density glasses,” J. Am. Ceram. Soc.,60, No. 5 (1984).Google Scholar
  4. 4.
    O. V. Voinov, “Asymptotic form of the free surface of a viscous fluid in creeping flow and variation of the contact angle with the velocity,” Dokl. Akad. Nauk SSSR,243, No. 6 (1978).Google Scholar
  5. 5.
    A. G. Zatsepin, A. G. Kostyanoi, and G. I. Shapiro, “Slow spreading of a viscous fluid over a horizontal surface,” Dokl. Akad. Nauk SSSR, 265, No. 1 (1982).Google Scholar
  6. 6.
    U. Prakht, “Implict calculation of creeping flow as applied to continental drift,” in: Numerical Methods in Fluid Mechanics [Russian translation], Mir, Moscow (1973).Google Scholar
  7. 7.
    V. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 7, Theory of Elasticity [in Russian], Nauka, Moscow (1978).Google Scholar
  9. 9.
    D. G. Ionesku, “Theory of analytic functions and hydrodynamics,” in: Applications of the Theory of Functions in the Mechanics of Continuous Media, Vol. 2, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1965).Google Scholar
  10. 10.
    L. K. Antanovskii, “Dynamics of an interface under the effect of capillary forces. Quasi-stationary plane-parallel flow,” Prikl. Mekh. Tekh. Fiz., No. 3 (1988).Google Scholar
  11. 11.
    L. K. Antanovskii, “Complex representation of the solutions of the Navier-Stokes equations,” Dokl. Akad. Nauk SSSR,261, No. 4 (1981).Google Scholar
  12. 12.
    R. W. Hopper, “Plane Stokes flow driven by capillarity on a free surface,” J. Fluid Mech.,213, 349 (1990).Google Scholar
  13. 13.
    S. A. Chivilikhin, “Dynamics of a multiply connected free surface of a viscous fluid,” Dokl. Akad. Nauk SSSR,315, No. 3 (1990).Google Scholar
  14. 14.
    G. F. Grinberg, “Solution of the plane problem of the theory of elasticity and of the bending of a rim-mounted thin plate,” Dokl. Akad. Nauk SSSR,76, No. 5 (1951).Google Scholar
  15. 15.
    I. N. Vekua, “A solution of the fundamental biharmonic boundary-value problem and of the Dirichlet problem,” in: Problems in Mathematics and Mechanics [in Russian], Nauka, Leningrad (1970).Google Scholar
  16. 16.
    S. A. Chivilikhin, S. W. Tarakanow (S. V. Tarakanov), L. M. Tselowalnikova (Tselovalnikova), et al., “Viscous flow of silica glass in lightguide fabrication,” in: First International Soviet Fiber Optics Conference, Vol. 1, March 25–29, 1991, Information Gatekeepers, Inc., Boston (1991).Google Scholar
  17. 17.
    P. K. Suetin, Orthogonal Polynomials in Two Variables [in Russian], Nauka, Moscow (1988).Google Scholar
  18. 18.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1984).Google Scholar
  19. 19.
    N. I. Muskhelishvili, Basic Problems in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).Google Scholar
  20. 20.
    Ya. E. Geguzin, “Sintering of amorphous materials,” Dokl. Akad. Nauk SSSR,92, No. 92 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. A. Chivilikhin
    • 1
  1. 1.St. Petersburg

Personalised recommendations