Advertisement

Fracture of cylindrical shells by the action of periodic shock waves

  • M. A. Il'gamov
  • A. V. Sadykov
Article
  • 24 Downloads

Keywords

Mathematical Modeling Shock Wave Mechanical Engineer Industrial Mathematic Cylindrical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Betchov, “Nonlinear oscillations of a column of gas,” Phys. Fluids,1, No. 3 (1958).Google Scholar
  2. 2.
    R. A. Saenger and G. E. Hudson, “Periodic shock waves in resonating gas columns,” J. Acoust. Soc. Amer.,32, No. 8 (1960).Google Scholar
  3. 3.
    L. P. Gor'kov, “Nonlinear acoustic vibrations of a column of gas in a closed tube,” Inzh. Zh.,3, No. 2 (1963).Google Scholar
  4. 4.
    A. I. Gulyaev and V. M. Kuznetsov, “Vibrations of a gas with large amplitude in a closed tube,” Inzh. Zh.,3. No. 2 (1963).Google Scholar
  5. 5.
    W. Chester, “Resonant oscillations in closed tubes,” J. Fluid Mech.,18, Pt. 1 (1964).Google Scholar
  6. 6.
    U. Ingard and H. Ising, “Acoustic nonlinearity of an orifice,” J. Acoust. Soc. Amer.,42, No. 1 (1967).Google Scholar
  7. 7.
    S. Temkin, “Nonlinear gas oscillations in a resonant tube,” Phys. Fluids,11, No. 5 (1968)Google Scholar
  8. 8.
    Sh. U. Galiev, M. A. Il'gamov, and A. V. Sadykov, “Periodic shock waves in agas,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1970).Google Scholar
  9. 9.
    W. D. Collins, “Forced oscillations of systems governed by one-dimensional nonlinear wave equations,” Quart. J. Mech. Appl. Math.,24, No. 2 (1971).Google Scholar
  10. 10.
    D. B. Cruikshank, “Experimental investigation of finite amplitude acoustic oscillations in a closed tube,” J. Acoust. Soc. Amer.,52, No. 3 (1972).Google Scholar
  11. 11.
    B. J. Jimenes, “Nonlinear gas oscillations in pipes,” J. Fluid Mech.,59, Pt. 1 (1973).Google Scholar
  12. 12.
    J. S. Eninger and W. G. Vincenti, “Nonlinear resonant wave motion of a radiating gas,” J. Fluid Mech.,60, Pt. 1 (1973).Google Scholar
  13. 13.
    B. B. Sturtevant, “Nonlinear gas oscillations in pipes,” J. Fluid Mech.,63, Pt. 1 (1974).Google Scholar
  14. 14.
    Bao Tch Chu and S. J. Ving, “Thermally driven nonlinear oscillations in a pipe with travelling shock waves,” Phys. Fluids,6, No. 11 (1963).Google Scholar
  15. 15.
    W. G. Brownlee, “Nonlinear axial combustion instability in solid propellant motors,” AIAA J.,2, No. 2 (1964).Google Scholar
  16. 16.
    W. A. Sirignano and L. Crocco, “A shock wave model of unstable rocket combustors,” AIAA J.,2, No. 7 (1964).Google Scholar
  17. 17.
    M. A. Il'gamov and A. V. Sadykov, “Reaction of a cylindrical shell to periodic shock waves in its cavity,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2 (1973).Google Scholar
  18. 18.
    M. A. Il'gamov and Zh. M. Sakhabutdinov, “Parametrically excited oscillations of a cyclindrical shell, filled with a compressible liquid or gas,” in: Theory of Plates and Shells [in Russian], Nauka, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • M. A. Il'gamov
    • 1
  • A. V. Sadykov
    • 1
  1. 1.Kazan'

Personalised recommendations