Journal of Applied Mechanics and Technical Physics

, Volume 11, Issue 5, pp 840–843 | Cite as

Frequency at which vapor bubbles form during boiling

  • V. F. Prisnyakov
Article
  • 41 Downloads

Abstract

An expression is found for the frequency at which vapor bubbles form; the familiar empirical dependences follow from this expression as particular cases. The theoretical results are in satisfactory agreement with experiment.

Keywords

Mathematical Modeling Mechanical Engineer Theoretical Result Industrial Mathematic Satisfactory Agreement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. T. Alad'ev, in: ire Boiling Heat Transfer and Two-Phase Flow, [Russian Translation], Mir, Moscow (1969).Google Scholar
  2. 2.
    L. Tong, Boiling Heat Transfer and Two-Phase Flow, Wiley, New York (1965).Google Scholar
  3. 3.
    L. M. Zysina-Molozhen and S. S. Kutateladze, “Effect of pressure on the vapor-formation mechanism in a boiling liquid,” Zh. Tekh. Fiz.20, No. 1 (1950).Google Scholar
  4. 4.
    N. N. Mamontova, “Motion-picture study of the mechanism for boiling at large heat flows,” Prikl. Mekhan. i Tekh. Fiz., No. 3 (1963).Google Scholar
  5. 5.
    N. N. Mamontova, “Boiling of certain liquids at reduced pressures,” Prikl. Mekhan. i Tekh. Fiz., No. 3 (1966).Google Scholar
  6. 6.
    V. I. Tolubinskii, “Rate of vapor-bubble growth during the boiling of a liquid,” in: Heat and Mass Transfer [in Russian], Vol. 2, Izd. AN BSSR, Minsk (1962).Google Scholar
  7. 7.
    V. I. Tolubinskii, “Rate of vapor-bubble growth during the boiling of a liquid,” Izd. VUZ. Énergetika, No. 10 (1963).Google Scholar
  8. 8.
    V. I. Tolubinskii and Yu. N. Ostrovskii, “Rate of vapor-bubble growth during the boiling of solutions,” in: Convective Heat Transfer [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  9. 9.
    E. I. Aref'eva and I. T. Alad'ev, “Effect of surface wettability on heat transfer during boiling,” Inzh. Fiz. Zh.,1, No. 7 (1958).Google Scholar
  10. 10.
    V. I. Deev, V. V. Gusev, and G. P. Dubrovskii, “Mechanism for the boiling of water at reduced pressures,” Teploénergetika, No. 8 (1965).Google Scholar
  11. 11.
    D. Leppert and K. Pitts, “Boilmg,” in: Problems of Heat Transfer [Russian translation], Atomizdat, Moscow (1967).Google Scholar
  12. 12.
    Zuber, “On the stability of boiling heat transfer,” Trans. ASME,80, No. 3 (1958).Google Scholar
  13. 13.
    W. Fritz and W. Ends, “Study of the vapor-formation mechanism through a motion-picture study of vapor bubbles,” in: Questions of the Physics of Boiling [Russian translation], Mir, Moscow (1964).Google Scholar
  14. 14.
    M. Jacob and W. Linke, “Der Warmeubergang beim verdampfen von flubigkeit an senkrechten und waager echten flachen,” Phys. Z.,16, No. 8 (1935).Google Scholar
  15. 15.
    J. W. Westwater and J. G. Santangelo, “Photographic study of boiling,” Ind. Engng. Chem.,47 (1955).Google Scholar
  16. 16.
    F. C. Gunther and F. Kreith, “Photographic study of bubble formation in heat transfer to subcooled water,” Heat Trans. and Fluid Mech. Inst., 113–138 (1949).Google Scholar
  17. 17.
    F. C. Gunther, “Photographic study of surface boiling heat transfer to water with forced convection,” Trans. ASME,73, No. 2 (1951).Google Scholar
  18. 18.
    A. Perkins and J. W. Westwater, “Bubble diameter and rupture frequency during the boiling of methyl alcohol,” in: Questions of the Physics of Boiling [Russian translation], Mir, Moscow (1964).Google Scholar
  19. 19.
    N. Zuber, “Hydrodynamic aspects of nucleate pool boiling,” Ramo-Woolridge Research Laboratory Rept.RW-RL-164 (1960).Google Scholar
  20. 20.
    P. W. McFadden and P. Grassman, “The Relation between bubble frequency and diameter during nucleate pool boiling,” Internat. J. Heat Mass Trans.,5, 169–173 (1962).Google Scholar
  21. 21.
    R. A. Cole, “Photographic study of pool boiling in the region of the critical heat flux,” AIChE Journal,6, No. 4, 533 (1960).Google Scholar
  22. 22.
    A. P. Hatton and I. S. Hall, “Photographic study of boiling on prepared surfaces,” Proceedings of the 3rd International Heat-Transfer. Conference, Vol. 4, Chicago (1966).Google Scholar
  23. 23.
    R. Cole, “Bubble frequencies and departure volumes at subatmospheric pressures,” AIChE Journal,13., No. 4, 779–783 (1967).Google Scholar
  24. 24.
    C. I. Rallis and H. H. Jawurek, “Latent heat transport in saturated nucleate boiling,” Internat. J. Heat Mass Trans.,7., No. 10, 1051–1068 (1964).Google Scholar
  25. 25.
    A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkila, Moscow (1967).Google Scholar
  26. 26.
    H. J. Ivey, “Relationships between bubble frequency, departure diameter, and rise velocity in nucleate boiling,” Internat. J. Heat Mass Trans.,10, No. 8, 1023–1040 (1967).Google Scholar
  27. 27.
    Han Chi-yen and P. Griffith, “The mechanism of heat transfer in nucleate pool boiling,” Internat. J. Heat Mass Trans.,8, No. 6 (1965).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • V. F. Prisnyakov
    • 1
  1. 1.Dnepropetrovsk

Personalised recommendations