Temperature and pressure equilibrium distribution in a steady-state discharge with radiation

  • S. G. Alikhanov
  • I. K. Konkashbaev


Results of a numerical solution of the equations of energy and momentum balance are given for a steady-state discharge in a dense plasma.


Radiation Mathematical Modeling Mechanical Engineer Industrial Mathematic Dense Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. S. Piz, “Equilibrium characteristics of a constricted gas discharge cooled by Bremsstrahlung,” in: Controlled Thermonuclear Reactions [in Russian], Atomizdat, Moscow (1960).Google Scholar
  2. 2.
    H. Alfvén and E. Smars, “Gas insulation of a hot plasma,” Nature,188, 801 (1960).Google Scholar
  3. 3.
    S. G. Alikhanov and S. P. Ivaniya, “Temperature and density distribution in a high-temperature steady-state arc,” Zh. Tekh. Fiz.,35, 557 (1965).Google Scholar
  4. 4.
    G. K. Verboom, “The energy balance of an arc discharge in hydrogen gas,” Plasma Physics,11, 903 (1969).Google Scholar
  5. 5.
    S. A. Kaplan and S. B. Pikel'ner, Interstellar Media [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  6. 6.
    S. G. Alikhanov, I. K. Konkashbaev, and P. Z. Chebotaev, “The energy balance in a dense fusion plasma contained by walls,” Nuclear Fusion,10, 13 (1970).Google Scholar
  7. 7.
    B. B. Kadomtsev, “Hydromagnetic plasma, stability,” in: Reviews of Plasma Physics, Vol. 2, Consultants Bureau (1966).Google Scholar
  8. 8.
    I. K. Konkashbaev, “Current instability of a finite conductivity plasma,” Zh. Prikl. Mekhan. i Tekhn. Fiz., Vol. 11, No. 2 (1970).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • S. G. Alikhanov
    • 1
  • I. K. Konkashbaev
    • 1
  1. 1.Novosibirsk

Personalised recommendations