Quasilinear system of equations for parameters of developed turbulence. Calculation of irrotational flow distortion behind a grid

  • S. R. Bogdanov
  • G. F. Lekhto
Article
  • 22 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Quasilinear System Flow Distortion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. R. Bogdanov, “Closure of turbulence equations as a problem of the analytic and scaling properties of spectral functions,” Prikl. Mekh. Tekh. Fiz., No. 6 (1991).Google Scholar
  2. 2.
    M. S. Uberoi, “Effect of wind-tunnel contraction on free-stream turbulence,” J. Zero. Sci.,23, 756 (1965).Google Scholar
  3. 3.
    G. Comte-Bellot and S. Corrsin, “The use of contraction to improve the isotropy of grid-generated turbulence,” J. Fluid Mech.,25, Part 4 (1966).Google Scholar
  4. 4.
    A. Klein and V. Ramjee, “Effect of contraction geometry on nonisotropic free-stream turbulence,” Aeronaut. Q.,24, Part 1 (1973).Google Scholar
  5. 5.
    Hussein and Ramjee, “Effect of the shape of the an axisymmetric convergent duct on the turbulent flow of an incompressible fluid,” J. Fluid Mech., No. 2 (1976).Google Scholar
  6. 6.
    G. I. Derbunovich, A. S. Zemskaya, E. U. Repik, and Yu. P. Sosedko, “Effect of flow convergence on the turbulence level of flows,” Izd. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1987).Google Scholar
  7. 7.
    A. A. Townsend, Structure of Turbulent Flow with Transverse Shear [Russian translation], IL, Moscow (1959).Google Scholar
  8. 8.
    H. J. Tucker and A. J. Reynolds, “The distortion of turbulence by irrotational plane strain,” J. Fluid Mech.,32, Part 4 (1968).Google Scholar
  9. 9.
    A. J. Reynolds and H. J. Tucker, “The distortion of turbulence by general irrotational strain,” J. Fluid Mech.,68., Part 4 (1975).Google Scholar
  10. 10.
    J. Marechal, “Étude experimentale de la déformation plane d'une turbulence homogéne,” J. Mec.,11, No. 2 (1972).Google Scholar
  11. 11.
    J. Mathieu and D. Jandel, “Pathological behavior of turbulent flows and the spectral method,” in: Methods of Calculating Turbulent Flows [Russian translation], Mir, Moscow (1984).Google Scholar
  12. 12.
    B. E. Launder, G. J. Reece, and W. Rodi, “Progress in the development of a Reynolds stress turbulence closure,” J. Fluid Mech.,68, Part 3 (1975).Google Scholar
  13. 13.
    A. Lin and M. Vol'fshtein, “Theoretical study of equations for Reynolds stresses,” in: Turbulent Shear Flows [in Russian], Vol. 1, Mashinostroenie, Moscow (1982).Google Scholar
  14. 14.
    G. K. Batchelor and I. Proudman, “The effect of rapid distortion of a fluid in turbulent motion,” Q. J. Mech. Appl. Math.,1, Part 1 (1954).Google Scholar
  15. 15.
    E. J. Kerschen, “Constraints on the invariant functions of axisymmetric turbulence,” AIAA J.,21, No. 7 (1983).Google Scholar
  16. 16.
    J. Lamley, “Second-order methods for turbulent flows,” in: Methods of Calculating Turbulent Flows [Russian translation], Mir, Moscow (1984).Google Scholar
  17. 17.
    H. K. Moffat, “The degree of knottedness of tangled vortex lines,” J. Fluid Mech.,35, Part 1 (1969).Google Scholar
  18. 18.
    A. Levich and A. Tsinober, “On the role of helical structures in three-dimensional turbulent flow,” Phys. Lett.,93A, No. 6 (1983).Google Scholar
  19. 19.
    H. K. Moffat, “Transport effects associated with turbulence, with particular attention to the influence of helicity,” Rep. Prog. Phys.,46, No. 5 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. R. Bogdanov
    • 1
  • G. F. Lekhto
    • 1
  1. 1.Petrozavodsk

Personalised recommendations