Advertisement

Asymptotic theory of Görtler vortices in the boundary layer of a liquid

  • V. V. Bogolepov
  • I. I. Lipatov
Article
  • 31 Downloads

Keywords

Vortex Mathematical Modeling Boundary Layer Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. I. Taylor, “Stability of viscous liquid contained between two rotating cylinders,” Phil. Trans. R. Soc. A,223, 289 (1923).Google Scholar
  2. 2.
    H. Görtler, “Uber eine dreidimensionale instabilität laminarer grenzschichten an concaven wanden,” ZAMM,21, No. 2 (1941).Google Scholar
  3. 3.
    J. Bennett and P. Hall, “Secondary instability of Taylor-Görtler vortices to Tollmien-Schlichting waves in fully developed flows,” J. Fluid Mech.,186, 445 (1988).Google Scholar
  4. 4.
    Q. I. Daudpota, P. Hall, and T. A. Zang, “Nonlinear interaction of Görtler vortices and Tollmien-Schlichting waves in curved channel flows at finite Reynolds numbers,” J. Fluid Mech.,193, 569 (1988).Google Scholar
  5. 5.
    A. M. Smith, “Growth of Taylor-Görtler vortices along highly concave walls,” Quart, Appl. Math.,13, No. 3 (1955).Google Scholar
  6. 6.
    T. Herbert, “Stability of the boundary layer on a curved wall,” Arch. Mech.,28, 1039 (1976).Google Scholar
  7. 7.
    P. Hall, “Taylor-Görtler vortices in fully developed or boundary-layer flows: linear theory,” J. Fluid Mech.,124, 475 (1982).Google Scholar
  8. 8.
    P. Hall, “Nonlinear evolution of Görtler vortices in nonparallel boundary layers,” IMA J. Appl. Math.,29, 173 (1982).Google Scholar
  9. 9.
    P. Hall, “Linear development of Görtler vortices in growing boundary lavers,” J. Fluid Mech.,130, 41 (1983).Google Scholar
  10. 10.
    P. Hall, “Nonlinear development of Görtler vortices in growing boundary layers,” J. Fluid Mech.,193, 243 (1988).Google Scholar
  11. 11.
    P. Hall and W. D. Lakin, “Fully nonlinear development of Görtler vortices in growing boundary layers,” Proc. R. Soc. London,A415 (1988).Google Scholar
  12. 12.
    V. Kalburgi and S. M. Mangalam, “A comparative study of theoretical methods on Görtler instability,” AIAA Paper No. 0407, New York (1988).Google Scholar
  13. 13.
    L. F. Kozlov, A. I. Tsyganyuk, V. V. Babenko, et al., Formation of Turbulence in Shear Flows [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  14. 14.
    V. N. Zhigulev and A. M. Tumin, “Appearance of turbulence” in: Dynamical Theory of Excitation and Development of Instability in Boundary Layers [in Russian], Nauka, Novosibirsk (1987).Google Scholar
  15. 15.
    A. M. Tumin and Yu. P. Cherlov, “Asymptotic analysis of stability of flow in a compressible boundary layer on a curved surface,” Prikl. Mekh. Tekh. Fiz., No. 3 (1988).Google Scholar
  16. 16.
    Yu. G. Gurevich, “Development of a local disturbance in the boundary layer on a curved surface,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1 (1990).Google Scholar
  17. 17.
    V. V. Bogolepov, L. M. Degtyarev, O. M. Drozdova, and I. I. Lipatov, “Asymptotic structure of Taylor-Görtler vortices in a boundary layer,” Preprint No. 156, Institute of Applied Mechanics, USSR Academy of Sciences, Moscow (1988).Google Scholar
  18. 18.
    S. N. Timoshin, “Asymptotic analysis of spatially unstable spectrum of Görtler vortices,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1 (1990).Google Scholar
  19. 19.
    V. V. Bogolepov and I. I. Lipatov, “Asymptotic analysis of development of Görtler vortices in the boundary layer of a liquid near a concave surface,” Preprint No. 8, N. E. Zhukovskii Central Aerohydrodynamic Institute, Moscow (1990).Google Scholar
  20. 20.
    V. Ya. Neiland, “Asymptotic problems in the theory of viscous supersonic flows,” Tr. TSAGI, No. 1529 (1974).Google Scholar
  21. 21.
    V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations [in Russian], Nauka, Moscow (1984).Google Scholar
  22. 22.
    É. Kamke, Handbook of Ordinary Differential Equations [in Russian], Nauka, Moscow (1976).Google Scholar
  23. 23.
    H. Schlichting, Boundary Layer Theory [Russian translation], Inostr. Lit., Moscow (1956).Google Scholar
  24. 24.
    S. B. Rozhko, A. I. Ruban, and S. N. Timoshin, “Interaction of a three-dimensional boundary layer with extended obstacles,” Izv. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1 (1988).Google Scholar
  25. 25.
    V. V. Bogolepov, “Investigation of regimes of three-dimensional flow near a curved surface,” Prikl. Mekh. Tekh. Fiz., No. 1 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. V. Bogolepov
    • 1
  • I. I. Lipatov
    • 1
  1. 1.Moscow

Personalised recommendations