Advertisement

Shock-wave propagation through a vertical foam column with a density gradient

  • A. B. Britan
  • I. N. Zinovik
  • V. A. Levin
Article

Keywords

Mathematical Modeling Foam Mechanical Engineer Density Gradient Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. I. Palamarchuk, V. A. Vakhnenko, and A. V. Cherkashin, “Air shock waves in blast welding and cutting and their containment,” Avtomat. Svarka, No. 2 (1988).Google Scholar
  2. 2.
    M. V. Kazakov, The Use of Surface-Active Materials in Fire Fighting [in Russian], Stroiizdat, Moscow (1977).Google Scholar
  3. 3.
    F. M. Gel'fand, Accident Prevention in Coal-Mine Blasting [in Russian], Nedra, Moscow (1974).Google Scholar
  4. 4.
    B. E. Gel'fand, A. V. Gubanov, and E. I. Timofeev, “The propagation of shock waves in foams,” Fiz. Goreniya Vzryva, No. 4 (1981).Google Scholar
  5. 5.
    N. M. Kuznetsov, V. I. Timofeev, and A. V. Gubanov, “Analysis of shock wave propagation in thermodynamically stable foam,” Fiz. Goreniya Vzryva, No. 5 (1986).Google Scholar
  6. 6.
    V. M. Kudinov, R. E. Gel'fand, A. V. Gubanov, and B. I. Palamarchuk, “Shock waves in foamy gas-liquid materials,” Prikl. Mekh.,13, No. 3 (1977).Google Scholar
  7. 7.
    A. A. Borisov, B. E. Gelfand (Gel'fand), V. M. Kudinov, et al., “Shock waves in water foams,” Acta Astron.,5, No. 4 (1978).Google Scholar
  8. 8.
    V. M. Kuidnov, B. I. Palamarchuk, V. A. Vakhnenko, et al., “Relaxation phenomena in a foamy structure,” Progr. Astron. Aeron.,87, 96 (1983).Google Scholar
  9. 9.
    B. I. Palamarchuk and A. T. Malakhov, “Effect of relaxation processes on shock wave attenuation in aqueous foams,” Proc. 4th Int. Symp. on Blast Processing of Materials, Gotval'dov (1979).Google Scholar
  10. 10.
    J. S. Krasinski (Krasinskii), A. Khosla, and V. Ramesh, “Dispersion of shock waves in liquid foams of high dryness fraction,” Arch. Mech.,30, No. 4–5 (1978).Google Scholar
  11. 11.
    G. Patz and G. Smeets, “Pressure increase in two-phase media behind shock waves and by shock wave acceleration pistons,” Proc. 15th Int. Symp. on Shock Tubes and Shock Waves, Berkeley, CA (1985).Google Scholar
  12. 12.
    P. M. Weaver and N. H. Pratt, “An experimental investigation of the mechanism of shock waves-aqueous foam interaction,” Proc. 15th Int. Symp. on Shock Tubes and Shock Waves, Berkeley, CA (1985).Google Scholar
  13. 13.
    K. R. Kann, Capillary Hydrodynamics of Foams [in Russian], Nauka, Novosibirsk (1989).Google Scholar
  14. 14.
    A. F. Umnov, A. E. Golik, D. Yu. Paleev, and N. R. Shevtsov, Prevention and Containment of Underground Explosions [in Russian], Nedra, Moscow (1990).Google Scholar
  15. 15.
    J. Ikui, K. Matsuo, and Y. Yamamoto, “Fast-acting valves for use in short tubes,” Bull. JSME,20, No. 141 (1977).Google Scholar
  16. 16.
    F. L. Curzon and M. G. Phillips, “Low attenuation shock tube, driving mechanism and diaphragm characteristics,” Canada, J. Phys.,49, No. 15 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. B. Britan
    • 1
  • I. N. Zinovik
    • 1
  • V. A. Levin
    • 1
  1. 1.Moscow

Personalised recommendations