Calculation of the electrostrictive effect in prestressed ferroelectric ceramic shells under harmonic excitation

  • V. M. Bogomol'nyi


Mathematical Modeling Mechanical Engineer Industrial Mathematic Harmonic Excitation Ceramic Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. P. Mason, Piezoelectric Crystals and Ultrasonics, Van Nostrand, Princeton, NJ (1950).Google Scholar
  2. 2.
    K. M. Leung, S. T. Liu, and J. Kyonka, “Large electrostrictive effect in Ba:PZT and its applications,” Ferroelectrics,27, Nos. 1–4 (1980).Google Scholar
  3. 3.
    E. Klotinsh and J. Kotleris, “Parametric instability of acoustic waves in ferroelectric ceramics excited by an electric field,” Ferroelectrics,69, Nos. 1–2 (1986).Google Scholar
  4. 4.
    V. F. Vzyatyshev, V. S. Dobromyslov, V. N. Kalinichev, and V. I. Kuimov, “Shielded dielectric resonators with azimuthal oscillations,” Izv. Vyssh. Ucheb. Zaved., Radiofiz.,30, No. 1 (1987).Google Scholar
  5. 5.
    A. E. H. Love, A Treatise on the Mathematical Theory of Plasticity, Cambridge Univ. Press, Cambridge (1934).Google Scholar
  6. 6.
    V. M. Bogomol'nyi, “Calculation of the electrostrictive effect in prestressed piezoelectric ceramic shells of rotation,” Izv. Akad. Nauk ArmSSR. Mekh., No. 5 (1988).Google Scholar
  7. 7.
    D. S. Drumheller and A. Kalnins, “Dynamic shell theory for ferroelectric ceramics,” JASA,47, No. 5 (1970).Google Scholar
  8. 8.
    V. A. Boriseiko, V. T. Grichenko, and A. F. Ulitko, “Electroelasticity relations for piezoelectric ceramic shells of rotation,” Prikl. Mekh.,12, No. 2 (1976).Google Scholar
  9. 9.
    D. F. Nelson, Electric, Optic, and Acoustic Interactions in Dielectrics, Wiley, New York (1979).Google Scholar
  10. 10.
    E. V. Chenskii, “Monodomain polarization of ferroelectrics with a first-order phase transition,” Fiz. Tverd. Tela (Leningrad),12, No. 2 (1970).Google Scholar
  11. 11.
    A. E. Armenakas, “Effect of initial stresses on the oscillations of freely supported cylindrical shells,” Rakiet. Tekh. Kosmonavtika,2, No. 9 (1964).Google Scholar
  12. 12.
    V. Z. Vlasov and N. N. Leont'ev, Rollers, Plates, and Shells on an Elastic Base [in Russian], Fizmatgiz, Moscow (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. M. Bogomol'nyi
    • 1
  1. 1.Moscow

Personalised recommendations