Advertisement

Energy variant of the uniaxial theory of creep and rupture strength

  • V. P. Radchenko
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Energy Variant Rupture Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Strength Calculations and Tests. Theoretical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Method of Determining the Parameters of Creep and Stress-Rupture Curves for Uniaxial Loading. Procedural Recommendations, VNIINMASh, Moscow (1982).Google Scholar
  2. 2.
    Yu. P. Samarin, “Generalization of the method of differentiating strain in creep theory,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1971).Google Scholar
  3. 3.
    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    L. M. Kachanov, “Time to rupture under creep conditions,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8 (1958).Google Scholar
  5. 5.
    G. F. Lepin, Creep of Metals and Creep-Resistance Criteria [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  6. 6.
    O. V. Sosnin, “Energy variant of the theory of creep and rupture strength,” Probl. Prochn., No. 5 (1973).Google Scholar
  7. 7.
    A. M. Lokoshchenko and S. A. Shesterikov, “Method of describing creep and rupture strength in pure tension,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1980).Google Scholar
  8. 8.
    V. I. Astaf'ev, “Damage and fracture criteria in creep,” Probl. Prochn., No. 3 (1983).Google Scholar
  9. 9.
    V. N. Kisilevskii, “Variant of kinetic creep equation,” Probl. Prochn., No. 1 (1982).Google Scholar
  10. 10.
    V. P. Radchenko, Yu. P. Samarin, and S. M. Khrenov, “Governing equations for materials in the presence of three stages of creep,” Dokl. Akad. Nauk SSSR,288, No 3.Google Scholar
  11. 11.
    Y. P. Samarin and V. P. Radchenko, “Model describing deformation and destruction of metals while stretching them under creepage,” Proc. 9th Congress on Material Testing, Budapest, Vol. 1 (1986).Google Scholar
  12. 12.
    Yu. P. Samarin and V. P. Radchenko, “Governing equations for describing the creep and fracture of metals during cyclic creep,” Fifth All-Union Symposium. Summary of Documents and Reports. Volgograd, Part 2 (1987).Google Scholar
  13. 13.
    S. A. Shesterikov (editor), Laws of Creep and Rupture Strength: Handbook, Mashinostroenie, Moscow (1983).Google Scholar
  14. 14.
    O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of Creep Theory [in Russian], IG SO AN SSSR, Novosibirsk (1986).Google Scholar
  15. 15.
    V. V. Fedorov, “Thermodynamic representations on the strength and fracture of solids,” Probl. Prochn., No. 11 (1971).Google Scholar
  16. 16.
    V. V. Fedorov, “Thermodynamic method of estimating rupture strength,” ibid., No. 9 (1972).Google Scholar
  17. 17.
    D. A. Kiyalbaev and A. I. Chudnovskii, “Fracture of deformable bodies,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1970).Google Scholar
  18. 18.
    A. I. Chudnovskii, “Certain aspects of the fracture of deformable solids,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1969).Google Scholar
  19. 19.
    V. I. Astaf'ev, “Entropy criterion of fracture during creep (growth of ductile cracks),” in: Strength and Reliability of Structures [in Russian], KuAI, Kuibyshev (1981).Google Scholar
  20. 20.
    A. M. Lokoshchenko and S. A. Shesterikov, “Problem of evaluating rupture strength during stepped loading,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1982).Google Scholar
  21. 21.
    A. M. Lokoshchenko and I. V. Namestnikova, “Description of rupture strength for stepped loading,” Probl. Prochn., No. 1 (1983).Google Scholar
  22. 22.
    A. M. Lokoshchenko and S. A. Shesterikov, “Model of rupture strength with a nonmonotonic stress dependence of strain during fracture,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1982).Google Scholar
  23. 23.
    M. D. Dacheva, A. M. Lokoshchenko, and S. A. Shesterikov, “Model representation of limiting deformation during creep,” ibid., No. 4 (1984).Google Scholar
  24. 24.
    V. I. Kovpak, “Methods of predicting the rupture strength and creep of metallic materials for long service lives,” Author's Abstract of Engineering Sciences Doctoral Dissertation, Kiev (1979).Google Scholar
  25. 25.
    M. Planck, Principles of the Conservation of Energy [Russian translation], GONTI, Moscow-Leningrad (1938).Google Scholar
  26. 26.
    V. V. Fedorov, Kinetics of the Damage and Fracture of Solids [in Russian], Fan, Tashkent (1985).Google Scholar
  27. 27.
    N. N. Malinin, Applied Theory of Ductility and Creep [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  28. 28.
    Yu. N. Rabotnov and S. T. Mileiko, Transient Creep [in Russian], Nauka, Moscow (1970).Google Scholar
  29. 29.
    V. I. Kovpak, “Reliable determination of the beginning of the accelerated stage of creep,” Probl. Prochn., No. 12 (1973).Google Scholar
  30. 30.
    L. G. Mukhina, “Calculation of creep characteristics from experimental data using the method of nonparametric equalization,” in: Theoretical-Experimental Method of Studying Creep in Structures [in Russian], KPtI, Kuibyshev (1984).Google Scholar
  31. 31.
    Yu. P. Samarin, Constitutive Equations of Materials with Complex Rheological Properties [in Russian], KGU, Kuibyshev (1979).Google Scholar
  32. 32.
    Theoretical and Theoretical-Empirical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Theoretical-Experimental Method of Determining Creep and Rupture-Strength Parameters for Nonsteady Uniaxial Loading (1st ed.), Gosstandart, Moscow (1982).Google Scholar
  33. 33.
    O. V. Sosnin and O. O. Sosnin, “On thermoplasticity,” Probl. Prochn., No. 12 (1988).Google Scholar
  34. 34.
    O. V. Sosnin and N. G. Torshenov, “Creep and fracture of titanium alloy OT-4 at a constant temperature,” Probl. Prochn., No. 5 (1970).Google Scholar
  35. 35.
    M. V. Baumshtein and A. I. Badaev, “Determining the avalanche region of creep,” Probl. Prochn., No. 5 (1980).Google Scholar
  36. 36.
    V. V. Osasyuk, “Predicting the residual life of structural elements of power-plant equipment after long use,” Author's Abstract of Engineering Doctoral Dissertation, Kiev (1987).Google Scholar
  37. 37.
    V. P. Radchenko and S. V. Kuz'min, “Structural model of damage accumulation and fracture in metals during creep,” Probl. Prochn., No. 11 (1989).Google Scholar
  38. 38.
    V. N. Maklakov, “Connection between strength properties and internal energy density during the creep of structures,” Creep and Rupture Strength [in Russian], KPtI, Kuibyshev (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. P. Radchenko
    • 1
  1. 1.Kuibyshev

Personalised recommendations