Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 15, Issue 5, pp 638–642 | Cite as

Dynamics of shock waves in a liquid containing gas bubbles

  • S. S. Kutateladze
  • V. E. Nakoryakov
  • V. V. Sobolev
  • I. R. Shreiber
Article

Abstract

Results are presented of a numerical solution of the Korteweg-de Vries-Burgers equation that describes the propagation and establishment process for a stationary structure to a shock wave in a gas-liquid medium. Data are obtained on the time for the establishment of a stationary structure of a shock wave, propagation velocity, and amplitude oscillations in the front of the shock wave. Experiments are discussed on the basis of the results obtained for the study of shock waves in a liquid containing gas bubbles.

Keywords

Mathematical Modeling Shock Wave Mechanical Engineer Industrial Mathematic Stationary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. J. Cambell and A. S. Pitcher, “Shock waves in a liquid containing gas bubbles,” Proc. Roy. Soc., Ser. A,243, No. 1235 (1958).Google Scholar
  2. 2.
    L. Van Wijngaarden, “On equations of motion for mixtures of fluid and gas bubbles,” J. Fluid Mech.,33, No. 3 (1968).Google Scholar
  3. 3.
    L. Van Wijngaarden, “On the structure of shock waves in liquid-bubble mixtures,” Appl. Sci. Res.,22, No. 5 (1970).Google Scholar
  4. 4.
    A. P. Burdukov, V. E. Nakoryakov, B. G. Pokusaev, V. V. Sobolev, I. R. Shreiber, “Certain questions in the gasdynamics of a homogeneous model of a two-phase medium,” in: Numerical Methods of Continuum Mechanics [in Russian], Vol. 5, No. 2, VTs Sibirsk. Otd., Akad. Nauk SSSR, Novosibirsk (1971).Google Scholar
  5. 5.
    V. E. Nakoryakov, V. V. Sobolev, and I. R. Shreiber, “Longwave disturbances in a gas-liquid mixture,” Izv. Akad. Nauk SSSR, MZhG, No. 5 (1972).Google Scholar
  6. 6.
    A. P. Burdukov, V. V. Kuznetsov, S. S. Kutateladze, V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, “Shock wave in a gas-liquid medium,” Prikl. Mekhan. i Tekh. Fiz., No. 3 (1973).Google Scholar
  7. 7.
    S. S. Kutateladze, A. P. Burdukov, V. V. Kuznetsov, V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, “Structure of a weak shock wave in a gas-liquid medium,” Dokl. Akad. Nauk SSSR,207, No. 2 (1972).Google Scholar
  8. 8.
    L. Noordzij, “Shock waves in bubble-liquid mixtures,” Phys. Communs.,3, No. 1 (1971).Google Scholar
  9. 9.
    G. K. Batchelor, “Compression waves in a suspension of gas bubbles in a liquid,” Period. Sb. Perev. Inostr. Statei, No. 3 (1968).Google Scholar
  10. 10.
    V. K. Kedrinskii, “Propagation of disturbances in a liquid containing gas bubbles,” Prikl. Mekhan. i Tekh. Fiz., No. 4 (1968).Google Scholar
  11. 11.
    R. I. Nigmatulin, N. S. Khabeev, and V. Sh. Shaganov, “Shock waves in a liquid with gas bubbles,” Dokl. Akad. Nauk SSSR,214, No. 4 (1974).Google Scholar
  12. 12.
    B. E. Gel'fand, S. A. Gubin, B. S. Kogarko, and S. M. Kogarko, “Investigation into compression waves in a liquid mixture with gas bubbles,” Dokl. Akad. Nauk SSSR,213, No. 5 (1973).Google Scholar
  13. 13.
    V. I. Karpman, Nonlinear Waves in Dispersing Media [in Russian], Nauka, Moscow (1973).Google Scholar
  14. 14.
    C. Devin, “Survey of thermal radiation and viscous damping of pulsating air bubbles in water,” J. Acoust. Soc. Amer.,31, No. 12 (1959).Google Scholar
  15. 15.
    R. Z. Sagdeev, “Collective processes and shock waves in rarefied plasma,” in: Problems in Plasma Theory [in Russian], Vol. 4, Atomizdat, Moscow (1964).Google Scholar
  16. 16.
    A. V. Gurevich and L. P. Pitaevskii, “Decomposition of an initial discontinuity in the Korteweg-de Vries equations,” Pis'ma Zh. Éksp. i Tekh. Fiz.,17, No. 5 (1973).Google Scholar
  17. 17.
    A. V. Gurevich and L. P. Pitaevskii, “Nonstationary structure of a noncolliding shock wave,” Zh. Éksp. i Tekh. Fiz.,65, No. 2 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • S. S. Kutateladze
    • 1
  • V. E. Nakoryakov
    • 1
  • V. V. Sobolev
    • 1
  • I. R. Shreiber
    • 1
  1. 1.Novosibirsk

Personalised recommendations