Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 15, Issue 5, pp 585–589 | Cite as

Optimization of the parameters of a CO2 gasdynamic laser

  • V. D. Zharkov
  • L. Yu. Lapushonok
  • N. N. Chebikin
Article
  • 20 Downloads

Abstract

In order to maximize the gain coefficient of a CO2-N2-He gasdynamic laser, a total optimization of the stagnation parameters, the concentration coefficient, and the parameters which determine the shape of the nozzle (assuming a quasi-one-dimensional flow model) was carried out. The dependence of the optimized parameters on the limitations imposed by the stagnation temperature of the flow and the critical cross section have been determined.

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Flow Model Gain Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. G. Basov, V. G. Mikhailov, A. N. Oraevskii, and V. A. Shcheglov, “The attainment of an inverted population of molecules in a supersonic shock tube with a Laval nozzle,” Zh. Tekh. Fiz.,38, No. 12 (1968).Google Scholar
  2. 2.
    J. D. Anderson, “Time-dependent analysis of population inversions in an expanding gas,” Phys. Fluids,131, No. 8 (1970).Google Scholar
  3. 3.
    J. D. Anderson, R. L. Humphrey, J. S. Vamos, R. J. Plummer, and R. E. Jensen, “Population inversions in an expanding gas: theory and experiment,” Phys. Fluids,14, No. 12 (1971).Google Scholar
  4. 4.
    J. D. Anderson and E. L. Harris, “Modern advances in the physics of gasdynamic lasers,” AIAA Paper, No. 143 (1972).Google Scholar
  5. 5.
    R. Capiaux, “Effect laser dans l'ecoulement d'un melange gazeux (CO2-N2 et H2O),” Compt. Rend. Acad. Sci., Ser. A and B,271, No. 15 (1970).Google Scholar
  6. 6.
    J. Tulip and H. Seguin, “Gasdynamic CO2 laser pumped by combustion of hydrocarbons,” J. Appl. Phys.,42, No. 9 (1971).Google Scholar
  7. 7.
    N. A. Generalov, G. I. Kozlov, and I. K. Selezneva, /ldThe inverted population of the CO2 molecule in a rapidly expanding gas stream,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 5 (1971).Google Scholar
  8. 8.
    N. A. Generalov, G. I. Kozlov, and I. K. Selezneva, “Calculation of the parameters of a gasdynamic laser,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 5 (1972).Google Scholar
  9. 9.
    S. Munjee, “Numerical analysis of a gasdynamic laser mixture,” Phys. Fluids,15, No. 3 (1972).Google Scholar
  10. 10.
    B. F. Gordetz, A. I. Osipov, E. V. Stupochenko, and L. A. Shelepin, “Oscillational relaxation in gases and molecular lasers,” Usp. Fiz. Nauk,108, No. 4 (1972).Google Scholar
  11. 11.
    M. Thomas-Andrand, A. Carrega, O. Leuchter, and J. P. Taran, “Laser themique a haute pression avec rechauffage par compression,” Rech. Aerospat, No. 6 (1972).Google Scholar
  12. 12.
    A. S. Biryukov and B. F. Gordetz, “The kinetic relaxation equations for rotational energy in polyatomic gas mixtures,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 6 (1972).Google Scholar
  13. 13.
    R. L. Taylor, S. Bitterman, “Survey of vibrational relaxation data for processes important in the CO2-N2 laser system,” Rev. Mod. Phys.,41, No. 1 (1969).Google Scholar
  14. 14.
    W. A. Rosser and E. T. Gerry, “De-excitation of vibrationally excited CO2 (v 3) by collisions with He, O2, and H2,” J. Chem. Phys.,51, No. 5 (1969).Google Scholar
  15. 15.
    S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley (1959).Google Scholar
  16. 16.
    V. P. Techinskii, “Potential gas lasers,” Usp. Fiz. Nauk,91, No. 3 (1967).Google Scholar
  17. 17.
    R. Ely and T. K. McCubbin, Jr., “The temperature dependence of the self-broadened half-width of the P-20 line in the 001–100 band of CO2,” Appl. Optics,9, No. 5 (1970).Google Scholar
  18. 18.
    V. V. Danielov, E. P. Kruglyakov, and E. V. Shunko, “Measurement of the transition probability P(20) (00 °1–10 °0) and the collisional broadening for collisions with CO2, N2, and He,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 6 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. D. Zharkov
    • 1
  • L. Yu. Lapushonok
    • 1
  • N. N. Chebikin
    • 1
  1. 1.Novosibirsk

Personalised recommendations