Artificial Intelligence Review

, Volume 8, Issue 1, pp 3–16 | Cite as

Operational concepts of nonmonotonic logics part 1: Default logic

  • G. Antoniou
  • V. Sperschneider
Article

Abstract

We give an introduction to default logic, one of the most prominent nonmonotonic logics. Emphasis is given to providing an operational interpretation for the semantics of default logic that is usually defined by fixed-point concepts (extensions). We introduce a process model that allows to exactly calculate the extensions of a default theory in a quite easy way. We give a prototypical implementation of processes in Prolog able to handle the examples that can be found in literature. Finally, we develop some theoretical results about default logic and give new simple proofs using the process model as a theoretical tool.

Key Words

default logic operational computation of extensions prototypical implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniou, G. & Langetepe, E. (1994). Relating Some Classes of Default Logic to Normal Logical Programs with Standard Semantics.Journal of Automated Reasoning (submitted).Google Scholar
  2. Besnard, P. (1989).An Introduction to Default Logic. Springer.Google Scholar
  3. Bibel, W. (1984). Knowledge Representation from a Deductive Point of View.Proc. IFAC Symposium Artificial Intelligence. Pergamon Press: Oxford.Google Scholar
  4. Brewka, G. (1991a).Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press 1991.Google Scholar
  5. Brewka, G. (1991b). Cumulative Default Logic — In Defence of Nonmonotonic Inference Relations.Artificial Intelligence 51: 183–205.Google Scholar
  6. Brewka, G. (1992).A Framework for Cumulative Default Logics. Technical Report TR-92-042, International Computer Science Institute, Berkeley.Google Scholar
  7. Dimopoulos, Y. & Magirou, V. (1994). A Graph Theoretic Approach to Default Logic.Information and Computation (forthcoming).Google Scholar
  8. Etherington, D. W. (1987). Formalizing Nonmonotonic Reasoning Systems.Artificial Intelligence 31: 41–85.Google Scholar
  9. Froidevaux, C. & Menjin, J. (1992).A Framework for Default Logics. Technical Report 755, Universite de Paris-Sud.Google Scholar
  10. Gelfond, M., Przymusinska, H., Lifschitz, V. & Truszczynski, M. (1991). Disjunctive Defaults.Proc. 2nd International Conference on Knowledge Representation and Reasoning. Morgan Kaufmann.Google Scholar
  11. Hopkins, M. S. (1993). Default Logic: Orderings and Extensions. InProc. European Conference on Symbolic and Quantitative Approaches to Uncertainty, Springer LNCS 747.Google Scholar
  12. Junker, U. & Konolige, K. (1990). Computing the Extensions of Autoepistemic and Default Logics with a TMS. InProc. AAAI-90, 278–283.Google Scholar
  13. Levy, F. (1991). Computing Extensions of Default Theories. InProc. European Conference on Symbolic and Quantitative Approaches to Uncertainty, Springer LNCS 548.Google Scholar
  14. Lucaszewicz, W. (1990).Non-Monotonic Reasoning. Ellis Horwood.Google Scholar
  15. Makinson, D. (1989). General Theory of Cumulative Inference. InProc. 2nd International Workshop on Nonmonotonic Reasoning, LNCS 346, Springer.Google Scholar
  16. Marek, V. W. & Truszczynski, M. (1993).Nonmonotonic Logic. Springer 1993.Google Scholar
  17. Mendelson, E. (1978).Introduction to Mathematical Logic. 2. ed., Van Nostrand: New York.Google Scholar
  18. Moore, R. C. (1982). The Role of Logic in Knowledge Representation and Commonsense Reasoning.Proc. AAAI-82.Google Scholar
  19. Nilsson, N. J. (1991). Logic and Artificial Intelligence.Artificial 47: 31–56.Google Scholar
  20. Poole, D. (1988). A Logical Framework for Default Reasoning.Artificial Intelligence 36.Google Scholar
  21. Reiter, R. (1980). A Logic for Default Reasoning.Artificial Intelligence 13: 81–132.CrossRefGoogle Scholar
  22. Schwind, C. (1990). A Tableau-Based Theorem Prover for a Decidable Subset of Default Logic. InProc. 10th International Conference on Automated Deduction. Springer LNC 449.Google Scholar
  23. Sperschneider, V. & Antoniou, G. (1991).Logic: A Foundation for Computer Science. Addison-Wesley.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • G. Antoniou
    • 1
  • V. Sperschneider
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations