Skip to main content
Log in

Calculating the nonisothermal separation streamlining of a sphere

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. A. E. Hamielec, T. W. Hoffman, and L. L. Ross, “Numerical solution of the Navier-Stokes equations for flow past spheres,” AIChE J.,13, No. 2 (1967).

  2. Y. Rimon and S. I. Cheng, “Numerical solution of a uniform flow over the sphere at intermediate Rynolds numbers,” Phys. Fluids,12, No. 5 (1969).

  3. V. N. Shepelenko, “The streamlining of a sphere with the flow of a viscous fluid at low Reynolds numbers,” ChMMSS,5, No. 3 (1974).

  4. S. I. Cheng, “A critical review of a numerical solution of Navier-Stokes equations,” Lect. Not. Phys.,41, 78 (1975).

    Google Scholar 

  5. N. N. Sayegh and W. H. Gauvin, “Numerical analysis of variable property heat transfer to a single sphere in high-temperature surroundings,” AIChE J.,25, No. 4 (1979).

  6. M. Renksizbulut and M. S. Joan, “Numerical investigation of droplet vaporization with a high-temperature flow,” Trans. ASME, Series S, Heat Transfer, No. 2 (1983).

  7. O. M. Belotserkovskii, Numerical Modeling in the Mechanics of Continuous Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  8. V. M. Kovenya and N. N. Yanenko, The Division Method in the Problems of Gasdynamics [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  9. A. V. Babakov, Numerical Simulation of Certain Problems in Aerohydrodynamics, VTs Akad. Nauk SSSR, Moscow (1986).

    Google Scholar 

  10. V. M. Kovenya, “Numerical simulation of problems in aerodynamics, based on the division method,” Dissertation, Physical-Mathematical Sciences, ITPM SO Akad. Nauk SSSR, (01.02.05), Novosibirsk (1982).

    Google Scholar 

  11. Yu. P. Golovachev and A. S. Kanailova, “A numerical study of the effects of slippage and temperature discontinuity at the surface of a sphere streamlined with a supersonic flow,” JEP,53, No. 3 (1987).

  12. M. N. Kogan, The Dynamics of Rarefied Gases [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  13. V. G. Trusov, S. A. Bardak, V. P. Turov, et al., “An automated system of thermodynamic data and calculations of equilibrium states,” in: Mathematical Methods of Chemical Thermodynamics [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  14. S. Taneda, “Studies of wake vortices, experimental investigation of wake behind a sphere at low Reynolds numbers,” J. Phys. Soc. Jpn.,11, No. 10 (1956).

  15. Y. S. Lee, Y. P. Chyon, and E. Pfender, “Particle dynamics and particle heat and mass transfer in thermal plasmas. Pt. II. Particle heat and mass transfer in thermal plasmas,” Plasma Chem. Plasma Proc.,5, No. 4 (1985).

  16. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  17. A. W. Baily and J. Hiatt, “Sphere drag coefficients for a broad range of Mach and Reynolds numbers,” AIAA J.,10, No. 11 (1972).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 91–96, July–August, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshelev, K.B., Strongin, M.P. Calculating the nonisothermal separation streamlining of a sphere. J Appl Mech Tech Phys 31, 594–599 (1990). https://doi.org/10.1007/BF00851336

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00851336

Keywords

Navigation