Journal of Applied Mechanics and Technical Physics

, Volume 12, Issue 5, pp 635–641 | Cite as

Two-dimensional magnetic fields in magnetohydrodynamic channels with steel walls at finite magnetic reynolds numbers

  • A. I. Bertinov
  • D. A. But
  • L. K. Kovalev
  • V. I. Yudas
Article
  • 20 Downloads

Abstract

Plane problems on the distribution of a two-dimensional magnetic field in magnetohydrodynamic channels with ferromagnetic walls at appreciable magnetic Reynolds numbers and prescribed flow hydrodynamics are studied. An integral representation for the total magnetic induction is constructed with the use of a complex influence function describing the field resulting from a unit current. This makes it possible to obtain arbitrarily close approximations to exact solutions of the problems on a digital computer. Influence functions for various channels can be determined by mirror reflections and conformai mappings. The method is illustrated by numerical calculations of the distribution of the magnetic field for the flow of a conducting fluid along a plane ferromagnetic wall and the flow of a fluid in the space between ferromagnetic walls. Calculations are carried out on the effect of an external circuit and an inhomogeneous transverse velocity profile on the distribution of the magnetic field.

Keywords

Reynold Number Plane Problem Digital Computer Transverse Velocity Influence Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. B. Vatazhin and S. A. Regirer, “Electric fields in channels of magnetohydrodynamic equipment,” Appendix to the Russian translation of: J. A. Shercliff, Theory of Electromagnetic Flow-Measurement, Cambridge Univ. Press, N. Y. (1962).Google Scholar
  2. 2.
    Yu. M. Mikhailov, “Liquid-metal MHD generators at high magnetic Reynolds numbers,” Magnitn Gidrodinam., No. 4 (1965).Google Scholar
  3. 3.
    B. V. Eliseev and A. D. Lobanov, “Determination of the mean value of the current, taking account of the induced fields,” Magnitn. Gidrodinam., No. 4 (1966).Google Scholar
  4. 4.
    B. V. Eliseev and A. D. Lobanov, “Some two-dimensional flows with finite magnetic Reynolds numbers,” Zh. Prikl. Mekhan. i Tekh. Fiz., No. 1 (1967).Google Scholar
  5. 5.
    A. I. Bertinov, D. A. But, and V. I. Chitechyan, “Methods of determining induced magnetic fields in linear, constant-current MHD generators,” Electr. MHD, Vol. 1, 463–485, Vienna (1968).Google Scholar
  6. 6.
    A. I. Bertinov, D. A. But, V. I. Chitechyan, and V. I. Yudas, “Calculation of hydromagnets of finite dimensions,” Magnitn. Gidrodinam., No. 2 (1969).Google Scholar
  7. 7.
    L. A. Bulis, P. L. Gusika, M. K. Kusainov, Yu. K. Shmelev, and V. G. Yaglenko, “Flow of mercury in a flume in a transverse magnetic field,” Magnitn. Gidrodinam., No. 2 (1966).Google Scholar
  8. 8.
    M. Petrik, “Operation of a MHD generator with a two-phase flow of liquid metal” MHD Generators Vol. 3, VINTI, Moscow (1966).Google Scholar
  9. 9.
    B. Kheg, Electromagnetic Calculations [in Russian], Énergoizdat, Moscow-Leningrad (1934).Google Scholar
  10. 10.
    M. Shtafl, Electrodynamic Problems in Electrical Machines and Transformers [in Russian] Énergiya, Moscow-Leningrad (1966).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1974

Authors and Affiliations

  • A. I. Bertinov
    • 1
  • D. A. But
    • 1
  • L. K. Kovalev
    • 1
  • V. I. Yudas
    • 1
  1. 1.Moscow

Personalised recommendations