Hydrodynamic analogies of the phenomena of ignition and extinction

  • A. G. Merzhanov
  • A. M. Stolin


The problem of determining the steady-state dissipative heating of a Newtonian liquid moving in a round tube of finite length, taking account of the dependence of the viscosity on the temperature, is formulated. The possibility of a jumpwise transition from low-temperature flow conditions with small mass flow rates to high-temperature flow conditions with large mass flow rates, and the reverse with a gradual change in the pressure drop, is established. This phenomenon is brought about by hydrodynamic thermal ignition and extinction; an analytical description of it is given.


Pressure Drop Mass Flow Flow Condition Industrial Mathematic Analytical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Merzhanov and A. M. Stolin, “The thermal theory of the flow of a viscous liquid,” Dokl. Akad. Nauk SSSR,198, No. 6 (1971).Google Scholar
  2. 2.
    A. G. Merzhanov, A. P. Posetsel'skii, A. M. Stolin, and A. S. Shteinberg, “Experimental realization of a hydrodynamic thermal explosion,” Dokl. Akad. Nauk SSSR,210, No. 1 (1973).Google Scholar
  3. 3.
    S. A. Bostandzhiyan, A. G. Merzhanov, and S. I. Khudyaev, “Hydrodynamic thermal explosion,” Dokl. Akad. Nauk SSSR,163, No. 1 (1965).Google Scholar
  4. 4.
    S. K. Aslanov, “Taking account of the effect of the dissipation factor under laminar flow conditions of the motion of a viscous liquid in a round tube, with heat transfer to the surrounding medium,” Tr. Kuibyshevsk. Aviats. In-ta, No. 15, Part 1 (1962).Google Scholar
  5. 5.
    E. A. Kearslay, “The viscous heating correction for viscosimeter flows” Trans. Soc. Rheol.,6, 253–262 (1962).Google Scholar
  6. 6.
    S. A. Kaganov, “Fully established laminar flow of an incompressible liquid in a flat channel and a round tube, taking account of the heat of friction and of the dependence of the viscosity on the temperature,” Zh. Prikl. Mekhan. i Tekh. Fiz., No. 3 (1962).Google Scholar
  7. 7.
    A. M. Stolin and A. G. Merzhanov, “Quasi-steady-state thermal conditions with the pressurized flow of a liquid,” Proceedings of the Fourth All-Union Meeting on Heat and Mass Transfer, Vol. 3 [in Russian], Minsk (1972).Google Scholar
  8. 8.
    D. A. Frank-Kamenetskii, “The ignition of coal and high-rate gasification,” Zh. Tekh. Fiz.,9, No. 16 (1939).Google Scholar
  9. 9.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Izd. Nauka, Moscow (1967).Google Scholar
  10. 10.
    Z. O. Bleviss, “Magnetogasdynamics of hypersonic Couette flow,” J. Aerospace Sci.,25, No. 10 (1958).Google Scholar
  11. 11.
    L. A. Vulis and K. E. Dzhaugashtin, “Magnetogasdynamic Couette flow,” Zh. Tekh. Fiz.,34, No. 12 (1964).Google Scholar
  12. 12.
    L. A. Vulis and K. E. Dzhaugashtin, “Hysteresis phenomena with flows of a conducting gas in the channel of a magnetohydrodynamic energy converter,” Teplofiz. Vys. Temp.,4, No. 1 (1966).Google Scholar
  13. 13.
    L. A. Vulis, Thermal Combustion Conditions, [in Russian], Izd. Gosénergoizdat, Moscow-Leningrad (1954).Google Scholar
  14. 14.
    V. G. Shukhov, Pipelines and Their Use in the Oil Industry [in Russian], Izd. Russk. T-vo Pech. i Izd. Dela, Moscow (1895).Google Scholar
  15. 15.
    S. M. Targ, Basic Problems in the Theory of Laminar Flows [in Russian], Izd. Gostekhizdat, Moscow-Leningrad (1951).Google Scholar
  16. 16.
    N. N. Semenov, “The thermal theory of combustions and explosions,” Usp. Fiz. Nauk,23, No. 3 (1940).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • A. G. Merzhanov
    • 1
  • A. M. Stolin
    • 1
  1. 1.Moscow

Personalised recommendations