Skip to main content
Log in

Diffusion problems in the linear theory of gasdynamic and chemical lasers

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The system of linear equations of multicomponent convective diffusion is reduced consistently with allowance for the features of the relevant laser devices. A criterion for the realization of a purely diffusion regime is established. A method of diagonalization of the diffusion coefficient matrix is given; it reduces the multicomponent problem to a series of one-component problems. The superposition of relaxation modes is discussed. A diffusion type hydrofluoric laser illustrates the influence of angular asymmetry of the particles on the output power of the radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. G. Basov, V. P. Igoshin, E. P. Markia, and A. N. Oraevskii, “Dynamics of chemical lasers,” in: Quantum Electronics [in Russian], No. 2, Sovet-skoe Radio, Moscow (1971).

    Google Scholar 

  2. V. N. Karnyushin and R. I. Soloukhin, “Application of gasdynamic flows in laser technology,” Fiz. Goren. Vzryva,8, No. 2 (1972).

  3. T. A. Cool, “The transfer chemical laser: a review of recent research,” IEEE J. Quant. Electron.,9, No. 1, Part 2 (1973).

  4. R. Hofland and H. Mirels, “Flame-sheet analysis of CW diffusion-type chemical lasers,” AIAA J.,10, No. 4 (1972).

  5. V. M. Margulis and A. D. Margolin, “Theory of CO2 diffusion laser,” Zh. Tekh. Fiz.,42, No. 3 (1973).

  6. J. G. Skifsfad, “Gasdynamic phenomena in chemical lasers,” Fourth Intern. Colloquium on Gas-dynamics of Explosions and Reactive Systems, La Jolla, California, USA, July (1973).

  7. D. Spencer, H. Mirels, and T. Jacobs, “Comparison of HF and DF continuous chemical lasers. I.” Power. Appl. Phys. Letters,16, No. 10 (1970).

  8. J. D. Anderson, Jr., “Time-dependent analysis of population inversions in an expanding gas,” Phys. Fluids,13, No. 8 (1970).

  9. G. Emanuel, “Analytical model for a continuous chemical laser,” J. Quant. Spectr. Rad. Transfer,11 No. 10 (1971).

  10. H. Mirels, R. Hofland, and W. S. King, “Simplified model of CW diffusion-type chemical laser,” AIAA J.,11, No. 2 (1973).

  11. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York (1948).

  12. H. A. Hassan and J. W. Bordeaux, “Analysis of an electric discharge CO2 mixing laser,” AIAA J.,10 No. 4 (1972).

  13. R. Borghi and M. Charpenel, “Le melange a grande vitesse d'azote excite en vibration avec du gaz carbonique,” Astronautica Acta,17, Nos. 4–5 (1972).

  14. S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  15. R. Haase, Thermodynamik der irreversiblen Prozesse, Steinkopff, Darmstadt (1963).

    Google Scholar 

  16. N. G. Preobrazhenskii, S. V. Senina and A. V. Senina, “Longitudinal relaxation times of oriented atoms,” Izv. Vuzov, Fizika, No. 1 (1966).

  17. N. G. Preobrazhenskii and S. V. Senina, “Theory of the relaxation of optically oriented atomic systems,” Opt. Spektrosk.,17, No. 6 (1964).

  18. P. Violino, “Analisi dei metodi ottici perlo studio del rilassamento di spin di un metallo alcalino per urto contro gas estranei,” Nuovo Cimento, Supp.,6, No. 2 (1968).

  19. J. I. Hinchen and G. M. Banas, “CWHF electric-discharge mixing laser,” Appl. Phys. Letters,17, No. 9 (1970).

  20. V. Kourganoff, Basic Methods in Transfer Problems, Clarendon Press, Oxford (1952).

    Google Scholar 

  21. Pai Shih-I, Theory of Jets [Russian translation], Fizmatgiz, Moscow (1960).

    Google Scholar 

  22. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New York (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnoi Mekhaniki, i Tekhnicheskoi Fiziki, No. 2, pp. 32–37, March–April, 1974.

I thank R. I. Soloukhin for discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preobrazhenskii, N.G. Diffusion problems in the linear theory of gasdynamic and chemical lasers. J Appl Mech Tech Phys 15, 172–176 (1974). https://doi.org/10.1007/BF00850654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00850654

Keywords

Navigation