Advertisement

Applied Scientific Research

, Volume 50, Issue 3–4, pp 347–368 | Cite as

Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes

  • Hans-Werner Bewersdorff
  • Horst Thiel
Article

Abstract

Pressure drop and velocity profile measurements are presented for turbulent flows of drag reducing fluids. The investigation was done in two rough pipes, known as “k”- and “d”-type rough pipes. The results are compared with those obtained in hydraulically smooth pipe of identical diameter. The spatial arrangement of the roughness elements in the pipe determines the parallel shift in the elastic sublayer and in the core region of the dimensionless turbulent velocity profile. The slopes of the velocity profiles in these regions remain unaffected by the arrangement which is an indication that the hydrodynamic influence of the roughness is restricted to the near-wall region. The drag reducing surfactant solution exhibited a drag reduction in the smooth as well as in the rough pipes which was higher than that given by Virk's maximum drag reduction asymptote. For this solution no influence of the roughness on the turbulence was detected when the dimensionless roughness height in viscous units was less than 12.

Keywords

Velocity Profile Surfactant Solution Drag Reduction Identical Diameter Roughness Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Virk, P.S.,AIChE J. 21 (1975) 625.Google Scholar
  2. 2.
    Giesekus, H., Bewersdorff, H.W., Frings, B., Hibberd, M., Kleinecke, K., Kwade, M. and Schröder, R.,Fortschr. Verfahresnstechnik 23 (1985) 3.Google Scholar
  3. 3.
    Giesekus, H. and Hibberd, M.F., In: Majumdar, A.S. and Mashelkar, R.A., (eds),Advances in Transport Processes, Vol. V. New Dehli: Wiley Eastern (1987) p. 229.Google Scholar
  4. 4.
    Shenoy, A.V.,Colloid & Polymer Sci. 262 (1984) 319.Google Scholar
  5. 5.
    Sellin, R.H.J. and Moses, R.T.,Drag Reduction in Fluid Flows. Chichester: Ellis Horwood (1989).Google Scholar
  6. 6.
    Gyr, A.,Structure of Turbulence and Drag Reduction, Berlin: Springer Verlag (1990).Google Scholar
  7. 7.
    Lindgren, E.R. and Hoot, T.G.,Trans. ASME, J. Appl. Mech. 35 (1968) 417.Google Scholar
  8. 8.
    Sellin, R.H.J., Hoyt, J.W., Pollert, J. and Scrivener, O.,J. Hydraulic Res. 20 (1982) 235.Google Scholar
  9. 9.
    Mizushina, T. and Usui, H.,Phys. Fluids 20 (1977) S100.Google Scholar
  10. 10.
    Schümmer, P. and Thielen, W.,Chem Eng. Commun. 4 (1981) 593.Google Scholar
  11. 11.
    Schmid, A., In: Sellin, R.H.J. and Moses, R.T. (eds),Drag Reduction. Bristol: University of Bristol (1984) paper B12.Google Scholar
  12. 12.
    Willmarth, W.W., Wei, T. and Lee, C.O.,Phys. Fluids 30 (1987) 933.Google Scholar
  13. 13.
    Tiederman, W.G., Luchik, T.S. and Bogard, D.G.,J. Fluid Mech. 156 (1985) 419.Google Scholar
  14. 14.
    Virk, P.S.,J. Fluid Mech. 45 (1971) 225.Google Scholar
  15. 15.
    McNally, W.A., Ph.D. Thesis, University of Rhode Island, U.S.A. (1968).Google Scholar
  16. 16.
    Debrule, P. M. and Sabersky, R.H.,Int. J. Heat Mass Transfer 17 (1974) 529.Google Scholar
  17. 17.
    Spangler, J.G., In: Wells, C.S. (ed.),Viscous Drag Reduction. New York: Plenum Press (1969) p. 131.Google Scholar
  18. 18.
    Perry, A.E., Schofield, H.W. and Joubert, P.N.,J. Fluid Mech. 37 (1969) 383.Google Scholar
  19. 19.
    Nunner, W.,VDI-Forschungsheft 455 (1956).Google Scholar
  20. 20.
    Möbius, H.,Physikalische Zeitschrift 41 (1940) 202.Google Scholar
  21. 21.
    Product specifications, Dow Chemical Company.Google Scholar
  22. 22.
    Bewersdorff, H.W. and Ohlendorf, D.,Colloid & Polymer Sci. 266 (1988) 941.Google Scholar
  23. 23.
    Hopf, L.,ZAMM 3 (1923) 329.Google Scholar
  24. 24.
    Morris, H.M.,Trans. ASCE 120 (1955) 373.Google Scholar
  25. 25.
    Nikuradse, J.,VDI-Forschungsheft 361 (1933).Google Scholar
  26. 26.
    Colebrook, C.F. and White, C.M.,Proc. Royal Soc. London, Ser. A, 161 (1937) 367.Google Scholar
  27. 27.
    Schlichting, H.,Grenzschicht-Theorie. Karlsruhe: G. Braun (1965).Google Scholar
  28. 28.
    Hama, F.R.,Trans. Soc. Naval Archit. Marine Engrs. 62 (1954) 333.Google Scholar
  29. 29.
    Bandhyopadhyay, P.R.,J. Fluid Mech. 180 (1987) 231.Google Scholar
  30. 30.
    Einstein, H.A. and El-Samni, E.A.,Rev. Mod. Phys. 21 (1949) 520.Google Scholar
  31. 31.
    Clauser, F.H., In:Advances in Applied Mechanics, Vol. 4. New York: Academic Press (1956) p. 1.Google Scholar
  32. 32.
    Moore, W.L., Ph.D. Thesis, University of Iowa, U.S.A. (1951).Google Scholar
  33. 33.
    Perry, A.E. and Joubert, P.N.,J. Fluid Mech. 17 (1963) 193.Google Scholar
  34. 34.
    Bewersdorff, H.W. and Petersmann, A.,Chem Eng. Commun. 60 (1987) 130.Google Scholar
  35. 35.
    Ivanyuta, Y.F. and Chekalova, L.A.,J. Eng. Phys. 31 (1974) 891.Google Scholar
  36. 36.
    Hendricks, E.W., Swearingen, J.D., Horne, M.P. and Lawler, J.V.,AIAA paper 88-3667 (1988).Google Scholar
  37. 37.
    Ohlendorf, D., Interthal, W. and Hoffmann, H.,Rheol. Acta 25 (1986) 468.Google Scholar
  38. 38.
    Wunderlich, A.M. and Brunn, P.O.,Colloid & Polymer Sci. 267 (1989) 289.Google Scholar
  39. 39.
    Vissmann, K. and Bewersdorff, H.W.,J. Non-Newtonian Fluid Mech. 34 (1990) 289.Google Scholar
  40. 40.
    Lindner, P., Bewersdorff, H.W., Heen, R., Sittart, P., Thiel, H., Langowski, J. and Oberthür, R.,Progr. Colloid & Polymer Sci. 81 (1990) 107.Google Scholar
  41. 41.
    Bewersdorff, H.W., Dohmann, J., Langowski, J., Lindner, P., Maack, A., Oberthür, R. and Thiel, H.,Physica B 156 & 157 (1989) 508.Google Scholar
  42. 42.
    Grass, A.J.,J. Fluid Mech 50 (1971) 233.Google Scholar
  43. 43.
    Sabot, J., Saleh, I. Comte-Bellot, G.,Phys. Fluids 20 (1977) S150.Google Scholar
  44. 44.
    Ligrani, P.M. Moffat, R.J.,J. Fluid Mech. 162 (1986) 69.Google Scholar
  45. 45.
    Bandhyopadhyay, P.R. Watson, R.D.,Phys. Fluids 31 (1988) 1877.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Hans-Werner Bewersdorff
    • 1
  • Horst Thiel
    • 2
  1. 1.Institute of Hydromechanics and Water Resources Management, Swiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.Department of Chemical EngineeringUniversity of DortmundDortmund 50Germany

Personalised recommendations