Skip to main content
Log in

Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Pressure drop and velocity profile measurements are presented for turbulent flows of drag reducing fluids. The investigation was done in two rough pipes, known as “k”- and “d”-type rough pipes. The results are compared with those obtained in hydraulically smooth pipe of identical diameter. The spatial arrangement of the roughness elements in the pipe determines the parallel shift in the elastic sublayer and in the core region of the dimensionless turbulent velocity profile. The slopes of the velocity profiles in these regions remain unaffected by the arrangement which is an indication that the hydrodynamic influence of the roughness is restricted to the near-wall region. The drag reducing surfactant solution exhibited a drag reduction in the smooth as well as in the rough pipes which was higher than that given by Virk's maximum drag reduction asymptote. For this solution no influence of the roughness on the turbulence was detected when the dimensionless roughness height in viscous units was less than 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virk, P.S.,AIChE J. 21 (1975) 625.

    Google Scholar 

  2. Giesekus, H., Bewersdorff, H.W., Frings, B., Hibberd, M., Kleinecke, K., Kwade, M. and Schröder, R.,Fortschr. Verfahresnstechnik 23 (1985) 3.

    Google Scholar 

  3. Giesekus, H. and Hibberd, M.F., In: Majumdar, A.S. and Mashelkar, R.A., (eds),Advances in Transport Processes, Vol. V. New Dehli: Wiley Eastern (1987) p. 229.

    Google Scholar 

  4. Shenoy, A.V.,Colloid & Polymer Sci. 262 (1984) 319.

    Google Scholar 

  5. Sellin, R.H.J. and Moses, R.T.,Drag Reduction in Fluid Flows. Chichester: Ellis Horwood (1989).

    Google Scholar 

  6. Gyr, A.,Structure of Turbulence and Drag Reduction, Berlin: Springer Verlag (1990).

    Google Scholar 

  7. Lindgren, E.R. and Hoot, T.G.,Trans. ASME, J. Appl. Mech. 35 (1968) 417.

    Google Scholar 

  8. Sellin, R.H.J., Hoyt, J.W., Pollert, J. and Scrivener, O.,J. Hydraulic Res. 20 (1982) 235.

    Google Scholar 

  9. Mizushina, T. and Usui, H.,Phys. Fluids 20 (1977) S100.

    Google Scholar 

  10. Schümmer, P. and Thielen, W.,Chem Eng. Commun. 4 (1981) 593.

    Google Scholar 

  11. Schmid, A., In: Sellin, R.H.J. and Moses, R.T. (eds),Drag Reduction. Bristol: University of Bristol (1984) paper B12.

    Google Scholar 

  12. Willmarth, W.W., Wei, T. and Lee, C.O.,Phys. Fluids 30 (1987) 933.

    Google Scholar 

  13. Tiederman, W.G., Luchik, T.S. and Bogard, D.G.,J. Fluid Mech. 156 (1985) 419.

    Google Scholar 

  14. Virk, P.S.,J. Fluid Mech. 45 (1971) 225.

    Google Scholar 

  15. McNally, W.A., Ph.D. Thesis, University of Rhode Island, U.S.A. (1968).

    Google Scholar 

  16. Debrule, P. M. and Sabersky, R.H.,Int. J. Heat Mass Transfer 17 (1974) 529.

    Google Scholar 

  17. Spangler, J.G., In: Wells, C.S. (ed.),Viscous Drag Reduction. New York: Plenum Press (1969) p. 131.

    Google Scholar 

  18. Perry, A.E., Schofield, H.W. and Joubert, P.N.,J. Fluid Mech. 37 (1969) 383.

    Google Scholar 

  19. Nunner, W.,VDI-Forschungsheft 455 (1956).

  20. Möbius, H.,Physikalische Zeitschrift 41 (1940) 202.

    Google Scholar 

  21. Product specifications, Dow Chemical Company.

  22. Bewersdorff, H.W. and Ohlendorf, D.,Colloid & Polymer Sci. 266 (1988) 941.

    Google Scholar 

  23. Hopf, L.,ZAMM 3 (1923) 329.

    Google Scholar 

  24. Morris, H.M.,Trans. ASCE 120 (1955) 373.

    Google Scholar 

  25. Nikuradse, J.,VDI-Forschungsheft 361 (1933).

  26. Colebrook, C.F. and White, C.M.,Proc. Royal Soc. London, Ser. A, 161 (1937) 367.

    Google Scholar 

  27. Schlichting, H.,Grenzschicht-Theorie. Karlsruhe: G. Braun (1965).

    Google Scholar 

  28. Hama, F.R.,Trans. Soc. Naval Archit. Marine Engrs. 62 (1954) 333.

    Google Scholar 

  29. Bandhyopadhyay, P.R.,J. Fluid Mech. 180 (1987) 231.

    Google Scholar 

  30. Einstein, H.A. and El-Samni, E.A.,Rev. Mod. Phys. 21 (1949) 520.

    Google Scholar 

  31. Clauser, F.H., In:Advances in Applied Mechanics, Vol. 4. New York: Academic Press (1956) p. 1.

    Google Scholar 

  32. Moore, W.L., Ph.D. Thesis, University of Iowa, U.S.A. (1951).

    Google Scholar 

  33. Perry, A.E. and Joubert, P.N.,J. Fluid Mech. 17 (1963) 193.

    Google Scholar 

  34. Bewersdorff, H.W. and Petersmann, A.,Chem Eng. Commun. 60 (1987) 130.

    Google Scholar 

  35. Ivanyuta, Y.F. and Chekalova, L.A.,J. Eng. Phys. 31 (1974) 891.

    Google Scholar 

  36. Hendricks, E.W., Swearingen, J.D., Horne, M.P. and Lawler, J.V.,AIAA paper 88-3667 (1988).

  37. Ohlendorf, D., Interthal, W. and Hoffmann, H.,Rheol. Acta 25 (1986) 468.

    Google Scholar 

  38. Wunderlich, A.M. and Brunn, P.O.,Colloid & Polymer Sci. 267 (1989) 289.

    Google Scholar 

  39. Vissmann, K. and Bewersdorff, H.W.,J. Non-Newtonian Fluid Mech. 34 (1990) 289.

    Google Scholar 

  40. Lindner, P., Bewersdorff, H.W., Heen, R., Sittart, P., Thiel, H., Langowski, J. and Oberthür, R.,Progr. Colloid & Polymer Sci. 81 (1990) 107.

    Google Scholar 

  41. Bewersdorff, H.W., Dohmann, J., Langowski, J., Lindner, P., Maack, A., Oberthür, R. and Thiel, H.,Physica B 156 & 157 (1989) 508.

    Google Scholar 

  42. Grass, A.J.,J. Fluid Mech 50 (1971) 233.

    Google Scholar 

  43. Sabot, J., Saleh, I. Comte-Bellot, G.,Phys. Fluids 20 (1977) S150.

    Google Scholar 

  44. Ligrani, P.M. Moffat, R.J.,J. Fluid Mech. 162 (1986) 69.

    Google Scholar 

  45. Bandhyopadhyay, P.R. Watson, R.D.,Phys. Fluids 31 (1988) 1877.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bewersdorff, HW., Thiel, H. Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes. Appl. Sci. Res. 50, 347–368 (1993). https://doi.org/10.1007/BF00850566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00850566

Keywords

Navigation