Advertisement

Development of dynamic forms of stability loss of elastic systems under intensive loading over a finite time interval

  • V. M. Kornev
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Finite Time Finite Time Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Lavrent'ev and A. Yu. Ishlinskii, “Dynamic forms of stability loss of elastic systems,” Dokl. Akad. Nauk SSSR,64, No. 6 (1949).Google Scholar
  2. 2.
    A. S. Vol'mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    V. M. Kornev, “The forms of stability loss of an elastic rod during impact,” Zh. Prikl. Mekhan. i Tekh. Fiz., No. 3 (1968).Google Scholar
  4. 4.
    V. M. Kornev, “The forms of stability loss of elastic shells under intensive loading,” Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No. 2 (1969).Google Scholar
  5. 5.
    K. O. Friedrichs, “Asymptotic phenomena in mathematical physics,” Bull. Amer. Math. Soc.,61, 485–504 (1955).Google Scholar
  6. 6.
    V. Z. Vlasov, Selected Works, Vol. 1 [in Russian], Academy of Sciences of the USSR, Moscow (1962).Google Scholar
  7. 7.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley-Interscience, New York (1962).Google Scholar
  8. 8.
    V. V. Bolotin, “The density of the frequencies of characteristic oscillations of thin elastic shells,” Prikl. Matem, i Mekhan.,27, No. 2 (1963).Google Scholar
  9. 9.
    N. N. Bendich and V. M. Kornev, “The density of the characteristic values in stability problems of thin elastic shells,” Prikl. Matem. i Mekhan.,35, No. 2 (1971).Google Scholar
  10. 10.
    R. G. Surkin, B. M. Zuev, and S. G. Stepanov, “Experimental study of the dynamic stability of spherical segments,” Prikl. Mekhan.,3, No. 8 (1967).Google Scholar
  11. 11.
    Yu. K. Bivin, “Study of the behavior of cylindrical and spherical shells for short duration loading,” in: Transient Deformations of Shells and Plates [in Russian], Tallin (1967).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. M. Kornev
    • 1
  1. 1.Novosibirsk

Personalised recommendations