Successive conversions of titanium derivatives in the catalytic system Cp2TiCl2 + AlR2Cl + RCl

  • É. A. Grigoryan
  • N. M. Semenova
  • F. S. D'yachkovskii
Physical Chemistry


  1. 1.
    Successive conversions of titanium derivatives take place in the system Cp2TiCl2 + AlEt2Cl + CH2 ·Cl2 according to the scheme
    $$\begin{gathered} Cp_2 TiRCl \cdot AlRCl_2 \xrightarrow[{AlR_2 Cl}]{{k_1 }}Cp_2 TiCl_2 \cdot AlRCl\xrightarrow[{CH_2 Cl_2 }]{{k_2 }} \hfill \\ \to CpTiCl_3 \cdot AlRCl_2 \to CpTiCl_2 \cdot 2AlRCl_2 . \hfill \\ \end{gathered} $$
    The effective rate constants of these reactions were determined.
  2. 2.

    Monocyclopentadienyl derivatives of titanium are active in the polymerization of ethylene when a stronger aprotonic acid AlRCl2 is added to the system AlRCl2.

  3. 3.

    In ethyl chloride there is no regeneration of active centers on account of the oxidation of the inactive complex of trivalent titanium Cp2TiCl2AlEtCl by the solvent molecules.



Oxidation Polymerization Ethylene Chloride Titanium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. A. Fushman, V. I. Tsvetkova, and N. M. Chirkov, Dokl. Akad. Nauk SSSR,164, 1085 (1965); Izv. Akad. Nauk SSSR, Ser. Khim., 2975 (1965).Google Scholar
  2. 2.
    A. K. Zefirova, N. N. Tikhomirova, and A. E. Shilov, Dokl. Akad. Nauk SSSR,132, 1082 (1960).Google Scholar
  3. 3.
    G. A. Razuvaev, V. N. Latyaeva, and M. I. Vyshinskaya, Dokl. Akad. Nauk SSSR,159, 383 (1964); Zh. Obshch. Khim.,35, 169 (1965).Google Scholar
  4. 4.
    G. P. Belov, É. A. Grigoryan, N. M. Semenova, and T. I. Solov'eva, Anniversary Conference of Young Scientists on Theoretical Problems of Physical Chemistry [in Russian], Moscow (1968), p. 51.Google Scholar
  5. 5.
    É. A. Grigoryan, F. S. D'yachkovskii, N. M. Semenova, and A. E. Shilov, Kinetics and Mechanism of Polyreaction, Vol. 2, Budapest (1969), p. 267.Google Scholar
  6. 6.
    A. E. Shilov, A. K. Shilova, and B. N. Bobkov, Vysokomoleukl. Soed.,4, 1688 (1962).Google Scholar
  7. 7.
    F. S. D'yachkovskii, A. E. Shilov, and L. I. Él'terman, Kinetika i Kataliz,4, 644 (1963).Google Scholar
  8. 8.
    T. S. Dzhabiev and A. E. Shilov, Zh. Strukt. Khim.,6, 302 (1965).Google Scholar
  9. 9.
    G. Henrici-Olive and S. Olive, Makromol. Chem.,121, 70 (1969).Google Scholar
  10. 10.
    E. A. Fushman, Dissertation [in Russian], Moscow (1967).Google Scholar
  11. 11.
    W. P. Long, J. Pol. Sci.,44, 250 (1960).Google Scholar
  12. 12.
    A. G. Pozamantir and M. G. Genusov, Zh. Obshch. Khim.,32, 1175 (1962).Google Scholar
  13. 13.
    E. B. Milovskaya, B. A. Dolgoplosk, and P. I. Dolgopol'skaya, Vysokomolekul. Soed.,4, 1503 (1962).Google Scholar
  14. 14.
    R. D. Gorsich, J. Amer. Chem. Soc.,82, 4211 (1960).Google Scholar
  15. 15.
    O. N. Babkina, É. A. Grigoryan, F. S. D'yachkovskii, A. E. Shilov, and N. I. Shuvalova, Zh. Fiz. Khimii,13, 1759 (1969).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • É. A. Grigoryan
    • 1
  • N. M. Semenova
    • 1
  • F. S. D'yachkovskii
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRUSSR

Personalised recommendations