Applied Scientific Research

, Volume 50, Issue 2, pp 169–188 | Cite as

Collision dynamics of bubble pairs moving through a perfect liquid

  • J. B. W. Kok
Article

Abstract

Equations are derived describing the inertial motion of a bubble pair through a perfect liquid. The relative bubble motion is driven by an interactional force induced by the centre of mass motion. This force can be derived from a potential that is proportional tos n (n≥3) and that depends on the bubble pair orientation. The path of two bubbles passing each other is investigated. The angle of deflection of the relative velocity in a two-bubble encounter is calculated numerically as a function of the impact parameter, the relative velocityg and the ratio of the centre of mass velocity componentsc2/c1. The specific conditions necessary for two bubbles to collide are determined. Ifc2/c1>1 there is a region with irregular behaviour of the deflection angle. The collision cross-section is calculated and depends smoothly ong, approximately proportional tog−1, and has a weak dependence onc2/c1.

Keywords

bubbles interaction scattering deflection collision bouncing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aref, H., Integrable, chaotic and turbulent vortex motion in two-dimensional flows.Ann. Rev. Fluid Mech. 15 (1983) 345–389.Google Scholar
  2. 2.
    Batchelor, G.K. and Green, J.T., The determination of the bulk stress in a suspension of spherical particles to orderc 2.J. Fluid Mech. 56 (1972) 401–427.Google Scholar
  3. 3.
    De Boer, J. and Van Kranendonk, J., The viscosity and heat conductivity of gases with central intermolecular forces.Physica 14 (1948) 442–452.Google Scholar
  4. 4.
    Chapman, S. and Cowling, T.G.,The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge, (1970).Google Scholar
  5. 5.
    Chesters, A.K. and Hofman, G., Bubble coalescence in pure liquids.Appl. Sci. Res. 38 (1982) 353–361.Google Scholar
  6. 6.
    Chesters, A.K., Eindhoven Univ. Techn. NL, private communication.Google Scholar
  7. 7.
    Eckhardt, B., Irregular scattering of vortex pairs.Europhys. lett. (1988).Google Scholar
  8. 8.
    Eckhardt, B., Institut für Festkorperforschung der Kernforschungsanlage Jülich FRG, private communication.Google Scholar
  9. 9.
    Gasiorowicz, S., Neuman, M. and Riddell Jr., R.J., Dynamics of ionized media.Phys. Rev. 101 (1956) 922–934.Google Scholar
  10. 10.
    Hirschfelder, J.O., Curtiss, Ch.F. and Bird, R.B.,Molecular Theory of Gases and Liquids. Wiley, New York (1964).Google Scholar
  11. 11.
    Jung, C., Poincaré map for scattering states.J. Phys. A: Math. Gen. 19 (1986) 1345–1353.Google Scholar
  12. 12.
    Keitel, G., Onken, U., Inhibition of bubble coalescence by solutes in air/water dispersions.Chem. Eng. Sc. 37 (1982) 1635–1638.Google Scholar
  13. 13.
    Kok, J.B.W., Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid.Physica 148 A (1988) 240–252.Google Scholar
  14. 14.
    Kok, J.B.W., Hydrodynamic equations and effective properties of bubbly flows. In: Afgan, N.,Proc. Int. Congr. on Transient Phenomena in Multiphase Flow, Hemisphere, Washington (1988) 127–136.Google Scholar
  15. 15.
    Kok, J.B.W., Dynamics of gas bubbles moving through liquid, Ph.D.-thesis, University of Twente, Enschede (1989).Google Scholar
  16. 16.
    Lamb, H.,Hydrodynamics. 6th edn., Cambridge University Press, Cambridge (1957).Google Scholar
  17. 17.
    Lessard, R. R., Zieminsky, S.A., Bubble coalescence and gas transfer in aqueous electrolytic solutions.Ind. Eng. Chem. Fundls 10 (1971) 260–269.Google Scholar
  18. 18.
    Marrucci, G., A theory of coalescence.Chem. Eng. Sc. 24 (1969) 975–985.Google Scholar
  19. 19.
    Montgomery, D.C. and Tidman, D.A.,Plasma Kinetic Theory.McGraw-Hill, New York (1964).Google Scholar
  20. 20.
    Rosenbluth, M.N., MacDonald, W.M. andJudd, D.L.:Fokker-Planck equation for an inverse-square force.Phys. Rev. 107 (1957) 1–6.Google Scholar
  21. 21.
    Tanenbaum, B.S.:Plasma Physics.McGraw-Hill, New York (1967).Google Scholar
  22. 22.
    Van Wijngaarden, L., Submitted toJ. Fluid Mech. Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. B. W. Kok
    • 1
  1. 1.Department of Thermal EngineeringUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations