Advertisement

Diols and epoxides Communication 8. Reactions of isomeric γ-chloro butanol acetates with potassium hydroxide

  • N. I. Shuikin
  • M. Bartok
  • B. Kozma
Organic and Biological Chemistry
  • 54 Downloads

Conclusions

  1. 1.

    The reactions of 4-chloro-2-butanol acetate (I) and 3-chloro-1-butanol acetate (II) with potassium hydroxide were investigated. From (I) 1,3-epoxybutane is formed in 80–85% yield, but from (II) the yield of 1,3-epoxybutane is low (about 7%), and propene (about 55%), trans-2-buten-1-ol (about 6%), and 3-buten-1-ol (about 17%) are formed.

     
  2. 2.

    The course of the transformations of a γ-chloro alkanol acetate under the action of caustic alkali is essentially determined by the structure of the compound. For a system with the chlorine atom in a primary position, the main course is the formation of the β-epoxide by the mechanism of intramolecular nucleophilic exchange. In the case of a compound with the chlorine atom in a secondary position the main course is the formation of an olefin and an oxo compound. These two main processes pass through the intermediate stage of a chloroalkoxide.

     
  3. 3.

    The two main reactions may be accompanied by bimolecular nucleophilic exchange processes—the formation of a 1,3-diol and unsaturated alcohols. In the case of γ-chloro alkanol acetates, with increase in the order of the carbon atom carrying the chlorine atom the intramolecular nucleophilic exchange reaction is displaced toward 1,4- and 1,2-elimination.

     

Keywords

Propene Carbon Atom Exchange Reaction Butanol Epoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    F. Sondheimer and R. B. Woodward, J. Amer. Chem. Soc.75, 5439 (1953).Google Scholar
  2. 2.
    N. G. Gaylord, J. H. Crowdle, W. A. Himmler, and H. J. Pepe, J. Amer. Chem. Soc.76, 59 (1954).Google Scholar
  3. 3.
    S. Searles, K. A. Pollart, and E. F. Lutz, J. Amer. Chem. Soc.79, 948 (1957).Google Scholar
  4. 4.
    M. Bartok and A. S. Gilde, Acta Phys. et Chem. (Szeged)9, 25 (1963).Google Scholar
  5. 5.
    J. B. Rose, J. Chem. Soc.1956, 542.Google Scholar
  6. 6.
    S. Searles, K. A. Pollart, and F. Block, J. Amer. Chem. Soc.79, 952 (1957).Google Scholar
  7. 7.
    A. Rosowsky and D. S. Tarbell, J. Organ. Chem.26, 2255 (1961).Google Scholar
  8. 8.
    G. Forsberg, Acta Chem. Scand.8, 135 (1954).Google Scholar
  9. 9.
    G. Forsberg, Nagra alifatiska klorhydriner och deras alkaliska hydrolys. Lund,1954, 84.Google Scholar
  10. 10.
    D. C. Dittmer, W. R. Hertler, and H. Winicov, J. Amer. Chem. Soc.79, 4431 (1957).Google Scholar
  11. 11.
    R. B. Clayton, H. B. Henbest, and M. Smith, J. Chem. Soc.1957, 1982.Google Scholar
  12. 12.
    S. Searles, R. G. Nickerson, and W. K. Witsiepe, J. Organ. Chem.24, 1839 (1959).Google Scholar
  13. 13.
    D. Kram., Steric Effects in Organic Chemistry. Ed. M. S. Newman, N.Y., 1956, p. 297.Google Scholar
  14. 14.
    S. Searles and M. J. Gortatowski, J. Amer. Chem. Soc.75, 3030 (1953).Google Scholar
  15. 15.
    H. B. Henbest and B. B. Millward, J. Chem. Soc.1960, 3575.Google Scholar
  16. 16.
    E. Kovacs, N. I. Shuikin, M. Bartok, and I. F. Bek'skii, Izv. AN SSSR. Otd. khim. n.1962, 124.Google Scholar
  17. 17.
    M. Bartok, B. Kozma, and J. Apjok, Izv. AN SSSR. Ser. khim.1964, 2192.Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • N. I. Shuikin
    • 1
    • 2
  • M. Bartok
    • 1
    • 2
  • B. Kozma
    • 1
    • 2
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRUSSR
  2. 2.Institute of Organic ChemistryJoseph Attila Szeged UniversityHungary

Personalised recommendations