Skip to main content
Log in

Adaptation of thymidine utilization to changing rates of DNA synthesis in the cell cycle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

In synchronous cultures of P-815 murine mastocytoma and of Chinese hamster ovary (CHO) cells, the relative contribution of exogenous thymidine to DNA synthesis was studied by comparing rates of (3H)thymidine incorporation with the rate of DNA synthesis as derived from incorporation of (3H)thymidine (10−5 m) in the presence of amethopterin. In synchronous P-815 cultures, time-dependent variations of DNA synthesis rates were in close agreement with those of (3H)thymidine incorporation rates at concentrations of the precursor ranging from 5 × 10−8 to 10−5 m. Similarly, in synchronous CHO cell cultures prepared by two different methods, time-dependent changes in DNA synthesis rate were almost identical with those of the rate of incorporation of (3H)thymidine supplied at 5 × 10−8 m. Thus, at a given thymidine concentration in the medium, the proportion of thymine residues in DNA that were derived from exogenous thymidine remained nearly constant, even though rates of cellular DNA synthesis underwent pronounced changes. This indicates that in the synchronous culture systems used, utilization of exogenous thymidine is efficiently adapted to changing rates of DNA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dendy, P. P. and Cleaver, J. E., 1965. Int. J. Radiat. Biol. 8, 301–315.

    Google Scholar 

  2. Klevecz, R. R., Keniston, B. A. and Deaven, L. L., 1975. Cell 5, 195–203.

    Google Scholar 

  3. Schaer, J. C., Ramseier, L. and Schindler, R., 1971. Exp. Cell Res. 65, 17–22.

    Google Scholar 

  4. Takagi, N. and Sandberg, A. A., 1968. Cytogenetics 7, 118–134.

    Google Scholar 

  5. Terasima, T. and Tolmach, L. J., 1963. Exp. Cell Res. 30, 344–362.

    Google Scholar 

  6. Siegers, M. P., Schaer, J. C., Hirsiger, H. and Schindler, R., 1974. J. Cell Biol. 62, 305–315.

    Google Scholar 

  7. Bostock, C. J. and Prescott, D. M., 1971. Exp. Cell Res. 64, 481–484.

    Google Scholar 

  8. Tobia, A. M., Schildkraut, C. L. and Maio, J. J., 1970. J. Mol. Biol. 54, 499–515.

    Google Scholar 

  9. Schindler, R., Ramseier, L., Schaer, J. C. and Grieder, A., 1970. Exp. Cell Res. 59, 90–96.

    Google Scholar 

  10. Schindler, R. and Schaer, J. C., 1973. Methods in Cell Biology Vol. VI, pp. 43–65, Academic Press, New York.

    Google Scholar 

  11. Meyn, R. E., Hewitt, R. R. and Humphrey, R. M., 1973. Exp. Cell Res. 82, 137–142.

    Google Scholar 

  12. Sinclair, W. K., 1965. Science 150, 1729–1731.

    Google Scholar 

  13. Schaer, J. C. and Schindler, R., 1967. Biochim. Biophys. Acta 147, 154–161.

    Google Scholar 

  14. Puck, T. T., Cieciura, S. J. and Robinson, A., 1958. J. Exp. Med. 108, 945–956.

    Google Scholar 

  15. Schaer, J. C., Maurer, U. and Schindler, R., 1978. Exp. Cell Biol. 46, 1–10.

    Google Scholar 

  16. Tobey, R. A., Anderson, E. C. and Petersen, D. F., 1967. J. Cell. Physiol. 70, 63–68.

    Google Scholar 

  17. Puck, T. T., Cieciura, S. J. and Fisher, H. W. 1957. J. Exp. Med. 106, 145–158.

    Google Scholar 

  18. Quastler, H. and Sherman, F. G. 1959. Exp. Cell. Res. 17, 420–438.

    Google Scholar 

  19. Gautschi, J. R. and Clarkson, J. M. 1975. Eur. J. Biochem. 50, 403–412.

    Google Scholar 

  20. Ifft, J. B., Voet, D. H. and Vinograd, J. 1961. J. Phys. Chem. 65, 1138–1145.

    Google Scholar 

  21. Hanania, N., Caneva, R., Tapiero, H. and Harel, J. 1975. Exp. Cell Res. 90, 79–86.

    Google Scholar 

  22. Schindler, R., Grieder, A. and Maurer, U. 1972. Exp. Cell Res. 71, 218–224.

    Google Scholar 

  23. Schildkraut, C. L., Marmur, J. and Doty, P. 1962. J. Mol. Biol. 4, 430–443.

    Google Scholar 

  24. Sueoka, N., Marmur, J. and Doty, P., 1959. Nature 183, 1429–1431.

    Google Scholar 

  25. Sueoka, N., 1961. J. Mol. Biol. 3, 31–40.

    Google Scholar 

  26. Painter, R. B. and Schaefer, A. W., 1971. J. Mol. Biol. 58,289–295.

    Google Scholar 

  27. Housman, D. and Huberman, J. A., 1975. J. Mol. Biol. 94, 173–181.

    Google Scholar 

  28. Dörmer, P., Brinkmann, W., Born, R. and Steel, G. G., 1975. Cell Tissue Kinet. 8, 399–412.

    Google Scholar 

  29. Sordat, M., Sordat, B., Cottier, H., Hess, M. W., Riedwyl, H., Chanana, A. and Cronkite, E. P., 1972. Exp. Cell Res. 70, 145–153.

    Google Scholar 

  30. Kapp, L. N. and Painter, R. B., 1977. Exp. Cell Res. 107,429–431.

    Google Scholar 

  31. Plagemann, P. G. W., Richey, D. P., Zylka, J. M. and Erbe, J., 1974. Exp. Cell Res. 83, 303–310.

    Google Scholar 

  32. Plagemann, P. G. W., Richey, D. P., Zylka, J. M. and Erbe, J., 1975. J. Cell Biol. 64, 29–41.

    Google Scholar 

  33. Hopwood, L. E., Dewey, W. C. and Hejny, W., 1975. Exp. Cell Res. 96, 425–429.

    Google Scholar 

  34. Walters, R. A., Tobey, R. A. and Ratliff, R. L., 1973. Biochim. Biophys. Acta 319, 336–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In partial fulfillment of the requirements for the degree of Ph.D. by G.G.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, G.G., Schaer, JC., Gautschi, J.R. et al. Adaptation of thymidine utilization to changing rates of DNA synthesis in the cell cycle. Mol Cell Biochem 27, 7–15 (1979). https://doi.org/10.1007/BF00849275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849275

Keywords

Navigation