Advertisement

Pediatric Nephrology

, Volume 1, Issue 3, pp 339–347 | Cite as

New approaches to the treatment of acute renal failure

  • Karen M. Gaudio
  • Norman J. Siegel
Invited Review
  • 27 Downloads

Abstract

At present, the clinician is left in a relatively dependent position when encountering a patient with established acute renal failure (ARF). Clearly, interventional therapies that can significantly influence the process of recovery from ARF are limited. Although a variety of manipulations and drugs will protect against the loss of renal function when administered prior to the initiation of a renal insult, the clinician usually encounters a patient after ARF has been established. Thus, pertubations that will protect against the development of ARF or modify the severity of the renal insult are not applicable. Moreover, it is clear that the mortality and morbidity for patients with ARF is unacceptably high. Although a variety of supportive measures such as peritoneal/hemodialysis or continuous arteriovenous hemofiltration are now applicable to patients of almost any size or weight, patients continue to diewith but perhaps notof ARF. This article will review several new agents that act to enhance the restoration of renal function and result in accelerated recovery of both glomerular and tubular function, following an established acute renal insult: adenine nucleotides, thyroxin, and calcium channel blockers.

Key words

Acute renal failure Adenine nucleotides Thyroxin Calcium channel blockers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vogt MT, Farber E (1968) On the molecular pathology of ischemic renal cell death. Am J Pathol 53: 1–24PubMedGoogle Scholar
  2. 2.
    Fernando AR, Griffiths JR, O'Donoghue E, Ward JP, Armstrong DMG, Hendry WF, Perrett D, Wickham JEA (1976) Enhanced preservation of the ischemic kidney with inosine. Lancet I: 555–557Google Scholar
  3. 3.
    Warnick CT, Lazarus HM (1980) Recovery of nucleotide levels after cell injury. Can J Biochem 59: 116–121Google Scholar
  4. 4.
    Collins GM, Taft P, Green RO, Ruprecht R, Halasz NA (1981) Adenine nucleotide levels and recovery of function after renal ischemic injury. World J Surg 1: 237–243Google Scholar
  5. 5.
    Stromski ME, Cooper K, Thulin G, Gaudio KM, Siegel NJ, shulman RG (1986) Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci 83: 6142–6145PubMedGoogle Scholar
  6. 6.
    Chaudry IH, Sayeed MM, Baue AE (1974) The effect of ATP-MgCl2 administration in shock. Surgery 75: 220–227PubMedGoogle Scholar
  7. 7.
    Osias MB, Siegel NJ, Chaudry IH, Lytton B, Baue AE (1977) Postischemic renal failure: Accelerated recovery with adenosine triphosphate-magnesium chloride infusion. Arch Surg 112: 729–731PubMedGoogle Scholar
  8. 8.
    Siegel NJ, Glazier WB, Chaudry IH, Gaudio KM, Lytton B, Baue AE, Kashgarian M (1980) Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats. Kidney Int 17: 338–348PubMedGoogle Scholar
  9. 9.
    Gaudio KM, Taylor MR, Chaudry IH, Kashgarian M, Siegel NJ (1982) Accelerated recovery of single nephron function by the postischemic infusion of ATP-MgCl2. Kidney Int 22: 13–20PubMedGoogle Scholar
  10. 10.
    Gaudio KM, Ardito TA, Reilly H, Kashgarian, M, Siegel NJ (1983) Accelerated cellular recovery after an ischemic renal injury. Am J Pathol 112: 338–346PubMedGoogle Scholar
  11. 11.
    Gaudio KM, Stromski M, Thulin G, Ardito T, Kashgarian M, Siegel NJ (1986) Postischemic hemodynamics and recovery of renal adenosine triphosphate. Am J Physiol 251: F603-F603PubMedGoogle Scholar
  12. 12.
    Siegel NJ, Avison MJ, Reilly HF, Alger JR, Shulman RG (1983) Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by31P-NMR. Am J Physiol 245: F530-F543PubMedGoogle Scholar
  13. 13.
    Siegel NJ, Gaudio KM, Cooper K, Thulin G, Avison M, Stromski M, Kashgarian M, Shulman RG (1985) Accelerating recovery from acute renal failure: exogenous metabolite augmentation. Mol Physiol 8: 593–598Google Scholar
  14. 14.
    Stromski ME, Cooper K, Thulin G, Avison MJ, Gaudio KM, Shulman RG, Siegel NJ (1986) Postischemic ATP-MgCl2 provides precursors for resynthesis of cellular ATP in rats. Am J Physiol 250: F834-F837PubMedGoogle Scholar
  15. 15.
    Dienemann H, Hesse U, Brechtelsbauer H, Mason J, Thurau K (1984) Ischaemic renal failure in conscious dogs: enhanced recovery with ATP-MgCl2 and adenosine. Eur Surg Res 16: 39–41Google Scholar
  16. 16.
    Mason J, Welsch J, Torhurst J (1985) Protection from ischaemic acute renal failure — the contribution of vascular decongestion (Abstract). Kidney Int 27: 234Google Scholar
  17. 17.
    Weinberg JM, Humes HD (1986) Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules. Am J Physiol 250: F720-F733PubMedGoogle Scholar
  18. 18.
    Takano T, Soltoff SP, Murdaugh S, Mandel LJ (1985) Intracellular respiratory dysfunction and cell injury in shortterm anoxia of rabbit renal proximal tubules. J Clin Invest 76: 2377–2384PubMedGoogle Scholar
  19. 19.
    Odaka M, Hirasawa H, Tabata Y, Kobayashi H, Sato H (1982) A new treatment of acute renal failure with direct hemoperfusion, enhancement of reticuloendothelial system and ATP-MgCl2. In: Eliahou HE (ed) Acute renal failure. John Libbey, LondonGoogle Scholar
  20. 20.
    Chaudry IH, Keefer JR, Barash P, Clemens MG, Kopf G, Baue AE (1984) ATP-MgCl2 infusion in man: increased cardiac output without adverse systemic hemodynamic effects. Surg Forum 35: 14–16Google Scholar
  21. 21.
    Lytton B, Vaisbort VR, Glazier WB, Chandry IH, Baue AE (1981) Improved renal function using ATP-MgCl2 in preservation of canine kidneys subjected to warm ischemia. Transplantation 31: 187–189PubMedGoogle Scholar
  22. 22.
    Garvin PJ, Jellinek M, Morgan R, Codd JE (1981) Renal cortical levels of adenosine triphosphate. Restoration after prolonged ischemia by the in situ perfusion of ATP-MgCl2. Arch Surg 116: 221–223PubMedGoogle Scholar
  23. 23.
    Straub E (1971) Einfluss von Thyroxin auf den Verlauf des akuten Nierenversagens. I. Einfluss der L-thyroxin-Applikation auf die Letalität von Kaninchen und Mäusen mit manifestem akutem Nierenversagen (Untersuchungen am Modell der sog. Sublimatnephrose). Z Ges Exp Med 154: 177–186Google Scholar
  24. 24.
    Straub E (1971) Einfluss von Thyroxin auf den Verlauf des akuten Nierenversagens. II. Einfluss der L-thyroxin-Applikation auf Plasmaspiegel und renale Ausscheidung verschiedener Substanzen bei Kaninchen mit manifestem akutem Nierenversagen (Untersuchungen am Model der sog. Sublimathephrose) Z Ges Exp Med 155: 32–55Google Scholar
  25. 25.
    Schulte-Wissermann H, Straub E, Funke P (1977) Influence of L-thyroxin upon enzymatic activity in the renal tubular epithelial of the rat under normal conditions and in mercury-induced lesions. Virchows Arch [B] 23: 163–173Google Scholar
  26. 26.
    Cronin RE, Newman JA (1985) Protective effect of thyroxin but not parathyroidectomy on gentamicin nephrotoxicity. Am J Physiol 248: F332-F339PubMedGoogle Scholar
  27. 27.
    Cronin RE, Brown DM, Simonsen R (1986) Protection by thyroxin in nephrotoxic acute renal failure. Am J Physiol 251: F408-F416PubMedGoogle Scholar
  28. 28.
    Siegel NJ, Gaudio KM, Katz LA, Reilly H, Ardito TA, Hendler FG, Kashgarian M (1984) Beneficial effect of thyroxin on recovery from toxic acute renal failure. Kidney Int 25: 906–911PubMedGoogle Scholar
  29. 29.
    Gaudio KM, Siegel NJ (1984) Pathophysiolology and treatment intervention in acute renal failure. In: Brodell J, Ehrich JHH, (eds) Pediatric nephrology. Springer, Berlin Heidelberg New York, pp 120–123Google Scholar
  30. 30.
    Barbior BM, Creagan S, Ingbar SH, Kipnes RS (1973) Stimulation of mitochondrial adenosine diphosphate uptake by thyuroid hormones. Proc Natl Acad Sci 170: 98–102Google Scholar
  31. 31.
    Ballard PL, Hovey ML, Gonzales LK (1984) Thyroid hormone stimulation of phosphatidyl-choline synthesis in cultured fetal rabbit lung. J Clin Invest 74: 898–905PubMedGoogle Scholar
  32. 32.
    Avner ED, Sweeney WE, Fingegold DN, Piesco NP, Ellis D (1985) Sodium-potassium ATPase activity mediates cyst formation in metanephric organ culture. Kidney Int 28: 447–455PubMedGoogle Scholar
  33. 33.
    Straub E (1976) Effects of L-thyroxine in acute renal failure. Res Exp Med 168: 81–84Google Scholar
  34. 34.
    Weinberg JM (1984) Calcium as a mediator of renal tubule cell injury. Semin Nephrol 4: 174–191Google Scholar
  35. 35.
    Humes HD (1986) Role of calcium in pathogenesis of ARF. Editorial review. Am J Physiol 259: F579-F589Google Scholar
  36. 36.
    Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological, and mitochondrial studies. J Clin Invest 74: 1830–1841PubMedGoogle Scholar
  37. 37.
    Papadimitriou M, Alexopoulos E, Vargemezis V, Sakellariou G, Kosmidou I, Metaxas P (1983) The effect of preventive administration of verpamil on acute ischaemic renal failure in dogs. Proc Eur Dial Transplant Assoc 20: 650–655PubMedGoogle Scholar
  38. 38.
    Wait RB, White G, Davis JH (1983) Beneficial effects of verapamil on postischemic renal failure. Surgery 94: 276–282PubMedGoogle Scholar
  39. 39.
    Wagner K, Schultze G, Molzahn M, Neumayer HH (1986) The influence of long-term infusion of the calcium antagonist diltiazem on postischemic acute renal failure in conscious dogs. Klin Wochenschr 64: 135–140Google Scholar
  40. 40.
    Goldfarb D, Iaina A, Serban I, Gavendo S, Kapuler S, Eliahou HE (1983) Beneficial effect of verpamil in ischemic acute renal failure in the rat. Proc Soc Exp Biol Med 172: 389–392PubMedGoogle Scholar
  41. 41.
    Malis CD, Cheung JY, Leaf A, Bonventre JV (1983) Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol 245: F735-F742PubMedGoogle Scholar
  42. 42.
    Hull RW, Hasbargen JA (1985) No clinical evidence for protective effects of calcium-channel blockers against acute renal failure (letter). N Engl J Med 313: 1477–1478PubMedGoogle Scholar
  43. 43.
    Duggan KA, Macdonald GJ, Charlesworth JA, Pussell Ba (1985) Verpamil prevents post-transplant oliguric renal failure. Clin Nephrol 24: 289–291PubMedGoogle Scholar
  44. 44.
    Cole BR, Needleman P (1986) Atriopeptin 24: a potent tool for ameliorating ischemic acute renal failure. Pediatr Res 20: 449AGoogle Scholar
  45. 45.
    Nakamoto M, Shapiro JI, Chan L, Shanley P, Schrier RW (1987) The protective effect of atrial natriuretic factor (ANF) on ischemic acute renal failure (ARF) (Abstract). Kidney Int 31: 371Google Scholar

Copyright information

© IPNA 1987

Authors and Affiliations

  • Karen M. Gaudio
    • 1
  • Norman J. Siegel
    • 1
  1. 1.Department of PediatricsYale University School of MedicineNew HavenUSA

Personalised recommendations