Advertisement

Molecular and Cellular Biochemistry

, Volume 57, Issue 2, pp 97–125 | Cite as

Chlorophylla biosynthetic routes and chlorophylla chemical heterogeneity in plants

  • C. A. Rebeiz
  • S. M. Wu
  • M. Kuhadja
  • H. Daniell
  • E. J. Perkins
Review

Summary

A six-branched chlorophylla biosynthetic pathway instead of a four-branched pathway has been proposed as being responsible for the formation of chlorophylla in green plants. The several biosynthetic routes that make up the pathway have been described as leading to the formation of ten chemically different groups of chlorophylla species. The latter differ from one another by one or more of the following modifications: (a) by having a vinyl or ethyl group at position 4 of the macrocycle, (b) by the nature of the long-chain fatty alcohols at position 7 of the macrocycle, and (c) by having a 6-membered lactone ring instead of a 5-membered cyclopentanone ring. The chemical structure of several of the metabolic intermediates of that pathway and of some of the chlorophylla species have now been determined by primary chemical derivatization methods coupled to spectrofluorometric, nuclear magnetic resonance and mass spectral analyses. The formation of highly organized photosynthetic membranes in which some of the chlorophyll α molecules are specifically oriented is ascribed to the multiplicity of chlorophyll biosynthetic routes which result in the formation of multiple chlorophyll α chemical species. Proper orientation of chlorophyll in the photosynthetic membranes is visualized as being controlled by peripheral group modifications that either modulate the polarity of the Chl chromophore or control the magnitude of the net positive charge on the central Mg atom. Finally it is proposed that in addition to the proper orientation of chlorophylla, chemical heterogeneity of the chlorophyll chromophores in the photosynthetic reaction centers is mandatory for efficient charge separation, and proper vectorial electron transfer.

Keywords

Chlorophyll Chlorophylla Macrocycle Chemical Heterogeneity Cyclopentanone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ALA

δ-aminolevulinic acid

Chl

chlorophyll

Chlide

chlorophyllide

Chl(ide)

a mixture of Chl and Chlide

Coprogen

coproporphyrinogen III

Dicot

dicotyledonous

DV

divinyl

HPLC

high pressure liquid chromatography

LWMP

longer wavelength metalloporphyrins, the putative intermediates between MPE and Pchl(ides)

Mg-Proto

Mg-protoporphyrin IX

MPE

Mg-protoporphyrin IX monoester

monocot

monocotyledonous

MS

mass spectroscopy

MV

monovinyl

NMR

nuclear magnetic resonance

PSI

photosystem I

PSII

photosystem II

Proto

protoporphyrin IX

Protogen

protoporphyrinogen IX

Pchlide

protochlorophyllide

Pchl

protochlorophyll

Pchl(ide)

a mixture of Pchlide and Pchl

RC

reaction center

SW

short wavelength

Urogen

uroporphyrinogen III.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Govindjee and Govindjee, R., 1975. Bioenergetics of Photosynthesis (Govindjee, ed.), pp. 1–49, Academic Press, New York.Google Scholar
  2. 2.
    Castelfranco, P. A. and Beale, S. I., 1981. The Biochemistry of Plants (Stumpf, P. K. and Conn, E. E., eds.), Vol. 8, pp. 376–421, Academic Press, New York.Google Scholar
  3. 3.
    Granick, S., 1950. J. Biol. Chem. 183: 713–730.Google Scholar
  4. 4.
    Rebeiz, C. A., Belanger, F. C., Cohen, C. E. and McCarthy, S., 1979. Ill. Res. 21: 3–4.Google Scholar
  5. 5.
    Belanger, F. C. and Rebeiz, C. A., 1979. Biochem. Biophys. Res. Commun. 88: 365–372.Google Scholar
  6. 6.
    Rebeiz, C. A., Belanger, F. C. McCarthy, S. A., Freyssinet, G., Duggan, J. X., Wu, S. M. and J. R. Mattheis, 1981. Photosynthesis. Proc. Int. Congr. Photosynth., 5th, 1980. (Akoyunoglou, G., ed.), Vol. V, pp. 197–212, Int. Sci. Services, Jerusalem.Google Scholar
  7. 7.
    Rebeiz, C. A., 1982. Chemtech. 12: 52–63.Google Scholar
  8. 8.
    Rebeiz, C. A. and Lascelles, J., 1982. Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.), Vol. I, pp. 699–780, Academic Press, New York.Google Scholar
  9. 9.
    Rebeiz, C. A. and Daniell, H., 1982. 4th Symposium on Biotechnology in Energy Production and Conservation (Scot, C. D., ed.), pp. 413–439, John Wiley and Sons, New York.Google Scholar
  10. 10.
    Stoll, A., and Wiedemann, E., 1950. Fortschr. Chem. Forsch. 2: 538–608.Google Scholar
  11. 11.
    Rebeiz, C. A. and Castelfranco, P. A., 1973. Annu. Rev. Plant Physiol. 24: 129–172.Google Scholar
  12. 12.
    Rebeiz, C. A., Smith, B. B., Mattheis, J. R., Cohen, C. A. and McCarthy, S. A., 1978. Chloroplast Development (Akoyunoglou, G. and Argyroudi-Akoyunoglou, eds.), pp. 59–76. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  13. 13.
    Belanger, F. C. and Rebeiz, C. A., 1980. Plant Sci. Lett. 18: 343–350.Google Scholar
  14. 14.
    Bogorad, L., 1966. The Chlorophylls (Vernon, L. P. and Seely, G. R., eds.), pp. 481–510, Academic Press, New York.Google Scholar
  15. 15.
    McCarthy, S. A., Belanger, F. C. and Rebeiz, C. A., 1981. Biochemistry 20: 5080–5087.Google Scholar
  16. 16.
    Rebeiz, C. A., Yaghi, M., Abou-Haidar, M. and Castelfranco, P. A., 1970. Plant Physiol. 46: 57–63.Google Scholar
  17. 17.
    Mattheis, J. R. and Rebeiz, C. A., 1977. Arch. Biochem. Biophys. 184: 189–196.Google Scholar
  18. 18.
    Belanger, F. C. and Rebeiz, C. A., 1982. J. Biol. Chem. 257: 1360–1371.Google Scholar
  19. 19.
    McCarthy, S. A., Mattheis, J. R. and Rebeiz, C. A., 1982. Biochemistry 21: 242–247.Google Scholar
  20. 20.
    Smith, B. B. and Rebeiz, C. A., 1979. Plant Physiol. 63, 227–231.Google Scholar
  21. 21.
    Belanger, F. C. and Rebeiz, C. A., 1980. Biochemistry 19, 4875–4883.Google Scholar
  22. 22.
    Belanger, F. C., Duggan, J. X. and Rebeiz, C. A., 1982. J. Biol. Chem. 257: 4849–4858.Google Scholar
  23. 23.
    Rebeiz, C. A., Bazzaz, M. B. and Belanger, F. C., 1978. Chromatogr. Rev. 4: 8–10.Google Scholar
  24. 24.
    Wu, S. M. and Rebeiz, C. A., 1982. Plant Physiol. 69: S-394.Google Scholar
  25. 25.
    Belanger, F. C. and Rebeiz, C. A., 1980. J. Biol. Chem. 255, 1266–1272.Google Scholar
  26. 26.
    Smith, B. B. and Rebeiz, C. A., 1977. Arch. Biochem. Biophys. 180: 178–185.Google Scholar
  27. 27.
    Rebeiz, C. A., Mattheis, J. R., Smith, B. B., Rebeiz, C. C. and Dayton, D. F., 1975. Arch. Biochem. Biophys. 166: 446–465.Google Scholar
  28. 28.
    Wu, S. M. and Rebeiz, C. A., 1983 (submitted for publication).Google Scholar
  29. 29.
    Bazzaz, M. B. and Brereton, R. G., 1982. FEBS Lett. 138: 104–108.Google Scholar
  30. 30.
    Bazzaz, M. B., Bradley, C. V. and Brereton, R. G., 1982. Tetrahedron Lett. 23: 1211–1214.Google Scholar
  31. 31.
    Fischer, H. and Stern, A., 1940. Die Chemie des Pyrrols, Vol. 2, Part 11, Akad. Verlagsges, Leipzig.Google Scholar
  32. 32.
    Freyssinet, G, Rebeiz, C. A., Fenton, J. F., Khanna, R. and Govindjee, 1980. Photobiochem. Photobiophys. 1: 203–212.Google Scholar
  33. 33.
    Duggan, J. X. and Rebeiz, C. A., 1982. Plant Sci. Lett. 24: 27–37.Google Scholar
  34. 34.
    Duggan, J. X. and Rebeiz, C. A., 1982. Plant Sci. Lett. 27: 137–145.Google Scholar
  35. 35.
    Wolff, J. B. and Price, L., 1957. Arch. Biochem. Biophys. 72: 293–301.Google Scholar
  36. 36.
    Schoch, S., Lampert, U. and Rüdiger, W., 1977. Z. pflanzenphysiol. 83: 427–436.Google Scholar
  37. 37.
    Rebeiz, C. A., Belanger, F. C., Freyssinet, G. and Saab, D. G., 1980. Biochim. Biophys. Acta 590: 234–247.Google Scholar
  38. 38.
    Shipman, L. L., Cotton, T. M., Norris, J. R., and Katz, J. J., 1976. J. Am. Chem. Soc. 98: 8222–8230.Google Scholar
  39. 39.
    Belanger, F. C. and Rebeiz, C. A., 1983 (submitted for publication).Google Scholar
  40. 40.
    Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnett, R., Buchschaeher, P., Closs, G. L., Dutler, H., Hannah, J., Hauck, F. P., Ito, S., Langemann, A., LeGoff, E., Leimgruber, W., Lwowski, W., Sauer, J., Valenta, Z. and Volz, H., 1960. J. Am. Chem. Soc. 82: 3800–3802.Google Scholar
  41. 41.
    Seely, G. R., 1966. The Chlorophylls (Vernons, L. P. and Seely, G. R., eds.), pp. 67–109, Academic Press, New York.Google Scholar
  42. 42.
    Hynninen, P., 1979. J. Chromatogr. 175: 75–88.Google Scholar
  43. 43.
    Hynninen, P. H., Wasielewski, M. R. and Katz, J. J., 1979. Acta. Chem. Scand. 33: 637–648.Google Scholar
  44. 44.
    Seely, J. R., 1973. J. Theoret. Biol. 40: 173–180.Google Scholar
  45. 45.
    Baum, R. M., 1982. Chem. and Eng. News. June 14: 21–25.Google Scholar
  46. 46.
    Boucher, L. J., 1979. Coordination Chemistry of Macrocyclic Compounds (Melson, G. A., ed.), pp. 517–536, Plenum Press, New York.Google Scholar
  47. 47.
    Belanger, F. C. and Rebeiz, C. A., 1983. (submitted for publication).Google Scholar
  48. 48.
    Govindjee, Wydrzynski, T. and Morks, S. B., 1977. Bioenergetics of Membranes (Packer, L., Papageorgiou, G. and Trebst, A., eds.), pp. 305–316, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  49. 49.
    Wydrzynski, T. and Sauer, K., 1980. Biochim. Biophys. Acta 589: 56–70.Google Scholar
  50. 50.
    Wydrzynski, T., 1982. Photosynthesis: Energy Conversion by Plants and Bacteria (Govindjee, ed.), Vol. 1, pp. 469–506, Academic Press, New York.Google Scholar
  51. 51.
    Fong, F. K., 1975. Appl. Phys. 6: 151–166.Google Scholar
  52. 52.
    Showell, M. S. and Fong, F. K., 1982. J. Am. Chem. Soc. 104: 2773–2781.Google Scholar
  53. 53.
    Norris, J. R., Uphaus, R. A., Crespi, H. L. and Katz, J. J., 1971. Proc. Natl. Acad. Sci. U.S.A. 68: 625–628.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1983

Authors and Affiliations

  • C. A. Rebeiz
    • 1
  • S. M. Wu
    • 1
  • M. Kuhadja
    • 1
  • H. Daniell
    • 1
  • E. J. Perkins
    • 1
  1. 1.Laboratory of Plant Pigment Biochemistry and Photobiology, Department of HorticultureUniversity of IllinoisUrbanaUSA

Personalised recommendations