Advertisement

Artificial Intelligence Review

, Volume 8, Issue 4, pp 309–336 | Cite as

Lexicalization in natural language generation: A survey

  • Manfred Stede
Article

Abstract

In natural language generation, a meaning representation of some kind is successively transformed into a sentence or a text. Naturally, a central subtask of this problem is the choice of words, orlexicalization. In this paper, we propose four major issues that determine how a generator tackles lexicalization, and survey the contributions that researchers have made to them. Open problems are identified, and a possible direction for future research is sketched.

Key words

natural language generation lexical choice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appelt, D. (1985).Planning Natural Language Utterances. Cambridge University Press: Cambridge.Google Scholar
  2. Bateman, J., Kasper, R., Moore, J. & Whitney, R. (1990).A General Organization of Knowledge for Natural Language Processing: The PENMAN Upper Model. Technical Report, Information Sciences Institute, University of Southern California.Google Scholar
  3. Becker, J. (1975). The Phrasal Lexicon. In Schank, R. C. & Nash-Webber, B. N. (eds.)Theoretical Issues in Natural Language Processing (TINLAP), 70–73. Cambridge, MA.Google Scholar
  4. Brachman, R. & Schmolze, J. (1985). An Overview of the KL-ONE Knowledge Representation System.Cognitive Science 9: 171–216.Google Scholar
  5. Buchberger, E. & Horacek, H. (1988). VIE-GEN: A Generator for German Texts. In McDonald, D. D. & Bolc, L. (eds.)Natural Language Generation Systems, Chapter 5, 166–204. Springer: New York.Google Scholar
  6. Busemann, S. (1993). A Holistic View of Lexical Choice. In Horacek, H. & Zock, M. (eds.)New Concepts in Natural Language Generation. Pinter: London.Google Scholar
  7. Carter, R. (1987).Vocabulary: Applied Linguistic Perspectives. Allen & Unwin: London.Google Scholar
  8. Cumming, S. (1986).The Lexicon in Text Generation. Technical Report ISI/RR-86-168, USC/ISI.Google Scholar
  9. Dale, R. (1989). Cooking up Referring Expressions. In Proceedings ofThe 27th Annual Meeting of the Association for Computational Linguistics, Vancouver.Google Scholar
  10. Danlos, L. (1987).The Linguistic Basis of Text Generation. Cambridge University Press.Google Scholar
  11. DiMarco, C., Hirst, G. & Stede, M. (1993). The Semantic and Stylistic Differentiation of Synonyms and Near-Synonyms. InWorking Notes of the AAAI Spring Symposium on Building Lexicons for Machine Translation, Stanford University.Google Scholar
  12. Elhadad, M. & McKeown, K. R. (1990). Generating Connectives. In Proceedings ofThe 13th International Conference on Computational Linguistics (COLING-90), 97–101. Helsinki.Google Scholar
  13. Elhadad, M. (1991). Generating Adjectives to Express the Speaker's Argumentative Intent. In Proceedings ofThe Fifth National Conference on Artificial Intelligence (AAAI-91), 98–104.Google Scholar
  14. Evens, M. W. (1988).Relational Models of the Lexicon. Cambridge University Press: Cambridge.Google Scholar
  15. Goldman, N. M. (1975). Conceptual Generation. In Schank, R. C. (ed.)Conceptual Information Processing. North-Holland: Amsterdam.Google Scholar
  16. Granville, R. (1984). Controlling Lexical Substitution in Computer Text Generation. In Proceedings ofThe 10th International Conference on Computational Linguistics (COLING-84), 381–384, Stanford.Google Scholar
  17. Gross, M. (1986). Lexicon-grammar and the Syntactic Analysis of French. In Proceedings ofThe 11th International Conference on Computational Linguistics (COLING-86), 275–282. Bonn.Google Scholar
  18. Healey, A. (1968). English Idioms.Kivung 1(2): 71–108.Google Scholar
  19. Heid, U. & Raab, S. (1989). Collocations in Multilingual Generation. In Proceedings ofThe Fourth Conference of the European Chapter of the Association for Computational Linguistics, 130–136, Manchester.Google Scholar
  20. Horacek, H. (1987). Choice of Words in the Generation Process of a Natural Language Interface.Applied Artificial Intelligence 1(1): 117–132.Google Scholar
  21. Horacek, H. (1990). The Architecture of a Generation Component in a Complete Natural Language Dialogue System. In Dale, R., Mellish, C. & Zock, M. (eds.)Current Research in Natural Language Generation, Chapter 8, 193–228. Academic Press: London.Google Scholar
  22. Hovy, E. H. (1988a). Generating Language with a Phrasal Lexicon. In McDonald, D. D. & Bolc, L. (eds.)Natural Language Generation Systems, Chapter 10, 353–384. Springer: New York.Google Scholar
  23. Hovy, E. H. (1988b).Generating Natural Language Under Pragmatic Constraints. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
  24. Iordanskaja, L., Kittredge, R. & Polguère, A. (1991). Lexical Selection and Paraphrase in a Meaning-Text Generation Model. In Paris, C. L., Swartout, W. R. & Mann, W. C. (eds.)Natural Language Generation in Artificial Intelligence and Computational Linguistics, Chapter 11, 293–312. Kluwer: Dordrecht.Google Scholar
  25. Jacobs, P. S. (1985). PHRED: A Generator for Natural Language Interfaces.Computational Linguistics 11(4): 219–242.Google Scholar
  26. Jacobs, P. S. (1987). Knowledge-Intensive Natural Language Generation.Artificial Intelligence 33: 325–378.Google Scholar
  27. Kantrowitz, M. & Bates, J. (1992). Integrated Natural Language Generation Systems. In Dale, R., Hovy, E., Rösner, D. & Stock, O. (eds.)Aspects of Automated Natural Language Generation — Proceedings of the 6th International WS on Natural Language Generation. Springer: Berlin/Heidelberg.Google Scholar
  28. Kukich, K. (1983). Design and Implementation of a Knowledge-Based Report Generator. In Proceedings ofThe 21st Annual Meeting of the Association for Computational Linguistics, 145–150. Cambridge, MA.Google Scholar
  29. Kukich, K. (1987). Where Do Phrases Come From: Some Preliminary Experiments in Connectionist Phrase Generation. In Kempen, G. (ed.)Natural Language Generation: New Results in Artificial Intelligence, Psychology and Linguistics, Chapter 26, 405–421. Martinus Nijhoff: Dordrecht.Google Scholar
  30. Kukich, K. (1988). Fluency in Natural Language Reports. In McDonald, D. D. & Bolc, L. (eds.)Natural Language Generation Systems, Chapter 8, 280–311. Springer: New York.Google Scholar
  31. Marcus, M. (1987). Generation Systems Should Choose Their Words. In Wilks, Y. (ed.)Theoretical Issues in Natural Language Processing, 211–214. New Mexico State University: Las Cruces.Google Scholar
  32. Matthiessen, C. (1991). Lexico(Grammatical) Choice in Text Generation. In Paris, C. L., Swartout, W. R. & Mann, W. C. (eds.)Natural Language Generation in Artificial Intelligence and Computational Linguistics, Chapter 10, 249–292. Kluwer: Dordrecht.Google Scholar
  33. McDonald, D. D. (1991). On the Place of Words in the Generation Process. In Paris, C. L., Swartout, W. R. & Mann, W. C. (eds.)Natural Language Generation in Artificial Intelligence and Computational Linguistics, 227–248. Kluwer: Dordrecht.Google Scholar
  34. McKeown, K. & Robin, J. (1993). Tailoring Lexical Choice to the User's Vocabulary in Multimedia Explanation Generation. In Proceedings ofThe 31st Annual Meeting of the Association for Computational Linguistics, 226–234, Columbus.Google Scholar
  35. McKeown, K., Elhadad, M., Fukumoto, Y., Lim, J., Lombardi, C., Robin, J. & Smadja, F. (1990). Natural Language Generation in COMET. In Dale, R., Mellish, C. & Zock, M. (eds.)Current Research in Natural Language Generation, Chapter 5, 103–139. Academic Press: London.Google Scholar
  36. Mel'čuk, I. A. & Polguère, A. (1987). A Formal Lexicon in the Meaning-Text Theory (or How to Do Lexica with Words).Computational Linguistics 13(3–4): 261–275.Google Scholar
  37. Miezitis, M. A. (1988). Generating Lexical Options by Matching in a Knowledge Base. Technical Report CSRI-217, University of Toronto.Google Scholar
  38. Nirenburg, S. & Nirenburg, I. (1988). A Framework for Lexical Selection in Natural Language Generation. In Proceedings ofThe 12th International Conference on Computational Linguistics (COLING-88), 471–475, Budapest.Google Scholar
  39. Nogier, J. & Zock, M. (1992). Lexical Choice as Pattern Matching. In Nagle, T. E., Nagle, J. A., Gerholz, L. L. & Eklund, P. W. (eds.)Conceptual Structures: Current Research and Practice. Ellis Horwood: New York.Google Scholar
  40. Novak, H.-J. (1988). Generating Referring Phrases in a Dynamic Environment. In Zock, M. & Sabah, G. (eds.)Advances in Natural Language Generation Vol. 2, 70–73. Pinter: London.Google Scholar
  41. Novak, H.-J. (1993). Ontology and Lexical Choice. In Horacek, H. & Zock, M. (eds.)New Concepts in Natural Language Generation. Pinter: London.Google Scholar
  42. Penman-Group, (1989).The Penman Documentation: the Primer, the User Guide, the Reference Manual, the NIGEL Manual. Technical Report, Information Sciences Institute, University of Southern California.Google Scholar
  43. Pustejovsky, J. & Nirenburg, S. (1987). Lexical Selection in the Process of Language Generation. In Proceedings ofThe 25th Annual Meeting of the Association for Computational Linguistics, 201–206.Google Scholar
  44. Reiter, E. B. (1990). A New Model for Lexical Choice for Open-Class Words. In Proceedings ofThe Fifth International Natural Language Generation Workshop, 23–30. Dawson, PA.Google Scholar
  45. Robin, J. (1990).Lexical Choice in Natural Language Generation. Technical Report CUCS-04090, Columbia University, New York.Google Scholar
  46. Rosch, E. (1978). Principles of Categorization. In Rosch, E. & Lloyd, B. (eds.)Cognition and Categorization. Lawrence Erlbaum: Hillsdale, NJ.Google Scholar
  47. Schank, R. C. (1975).Conceptual Information Processing. Elsevier-North Holland: New York.Google Scholar
  48. Smadja, F. & McKeown, K. R. (1991). Using Collocations for Language Generation.Computational Intelligence 7: 229–239.Google Scholar
  49. Sondheimer, N., Cumming, S. & Albano, R. (1990). How to Realize a Concept: Lexical Selection and the Conceptual Network in Text Generation.Machine Translation 5(1): 57–78.Google Scholar
  50. Sowa, J. F. (1984).Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley: New York.Google Scholar
  51. Stede, M. (1993a). Lexical Choice Criteria in Language Generation. In Proceedings ofThe Sixth Conference of the European Chapter of the Association for Computational Linguistics, Utrecht.Google Scholar
  52. Stede, M. (1993b). Lexical Options in Multilingual Generation from a Knowledge Base. InWorking notes of the Fifth European Workshop on Natural Language Generation, Pisa.Google Scholar
  53. Van Noord, G. (1990). An Overview of Head-driven Bottom-up Generation. In Dale, R., Mellish, C. & Zock, M. (eds.)Current Research in Natural Language Generation, Chapter 6, 141–166. Academic Press: London.Google Scholar
  54. Wanner, L. & Bateman, J. A. (1990). A Collocational Based Approach to Salience-Sensitive Lexical Selection. In Proceedings ofThe Fifth International Natural Language Generation Workshop, 31–38, Dawson, PA.Google Scholar
  55. Ward, N. (1990). Issues in Word Choice. In Proceedings ofThe 13th International Conference on Computational Linguistics (COLING-90), 726–731, Helsinki.Google Scholar
  56. Ward, N. (1991).A Flexible, Parallel Model of Natural Language Generation. Technical Report UCB/CSD-91/629, UC Berkeley, Computer Science Division.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Manfred Stede
    • 1
  1. 1.FAW Ulm and University of TorontoCanada

Personalised recommendations