Artificial Intelligence Review

, Volume 9, Issue 4–5, pp 255–259 | Cite as

A logical approach to representing and reasoning about space

  • A. G. Cohn
  • J. M. Gooday
  • B. Bennett
  • N. M. Gotts


The need for a formal language in which to express and reason about spatial concepts is of crucial importance in many areas of AI and visual systems. For the last five years, spatial reasoning research by the Qualitative Spatial Reasoning Group, University of Leeds, has centred on the development and application of such a language — the RCC spatial logic. Below, we briefly describe the work of the group in this area.

Key words

spatial reasoning qualitative reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. F. (1983). Maintaining Knowledge About Temporal Intervals.Communications of the ACM 26(11): 832–843.CrossRefGoogle Scholar
  2. Bennett, B. (1994). Spatial Reasoning with Propositional Logics. In Doyle, J., Sandewall E. & Torasso, P. (eds.)Principles of Knowledge Representation and Reasoning: Proceedings ofThe 4th International Conference (KR94), Morgan Kaufamnn: San Francisco, CA.Google Scholar
  3. Clarke, B. L. (1981). A Calculus of Individuals Based on Connection.Notre Dame Journal of Formal Logic 23(3): 204–218.Google Scholar
  4. Clarke, B. L. (1985). Individuals and Points.Notre Dame Journal of Formal Logic 26(1): 61–75.Google Scholar
  5. Cohn, A. G. & Gooday, J. M. (1994). Defining the Syntax and the Semantics of a Visual Programming Language in a Spatial Logic. In Anger, F. D. & Loganantharaj, R. (eds.) Proceedings ofAAAI-94 Spatial and Temporal Reasoning Workshop.Google Scholar
  6. Cohn, A. G. & Gotts, N. M. (1994). The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. Proceedings,GISDATA Specialist Meeting on Geographical Objects with Undetermined Boundaries, Baden, Austria, 8–12 June 1994 (to appear).Google Scholar
  7. Cohn, A. G., Gooday, J. M. & Bennett, B. (1994). A Comparison of Structures in Spatial and Temporal Logics. In Casati, R., Smith. B. & White, G. (eds.)Philosophy and the Cognitive Sciences: Proceedings of the 16th International Wittgenstein Symposium. Hölder-Pichler-Tempsky: Vienna (to appear).Google Scholar
  8. Cohn, A. G., Randell, D. A. & Cui, Z. (1994). Taxonomies of Logically Defined Qualitative Spatial Relations. In Guarino, N. & Poli, R. (eds.)Formal Ontology in Conceptual Analysis and Knowledge Representation. Kluwer (to appear).Google Scholar
  9. Cohn, A. G., Randell, D. A., Cui, Z. & Bennett, B. (1993). Qualitative Spatial Reasoning and Representation. In Carreté, N. P. & Singh, M. G. (eds.)Qualitative Reasoning and Decision Technologies, 513–522. CIMNE: Barcelona.Google Scholar
  10. Cui, Z., Cohn, A. G. & Randell, D.A. (1992a). Qualitative Simulation Based on a Logic of Space and Time.QR-92, Heriot-Watt University: Scotland.Google Scholar
  11. Cui, Z., Cohn, A. G. & Randell, D. A. (1992b). Qualitative Simulation Based on a Logical Formalism of Space and Time. ProceedingsAAAI-92, 679–687 AAAI Press: Menlo Park, California.Google Scholar
  12. Gooday, J. M. & Cohn, A. G. (1994). Conceptual Neighbourhoods in Spatial and Temporal Reasoning. In Rodríguez, R. (ed.) ProceedingsECAI-94 Workshop on Spatial and Temporal Reasoning.Google Scholar
  13. Gotts, N. M. (1994). How Far Can We ‘C’? Defining a ‘Doughnut’ Using Connection Alone. In Doyle, J., Sandewall, E. & Torasso, P. (eds.)Principles of Knowledge Representation and Reasoning: Proceedings ofThe 4th International Conference (KR94). Morgan Kaufmann: San Francisco, CA.Google Scholar
  14. Randell, D. A. & Cohn, A. G. (1989), Modelling Topological and Metrical Properties of Physical Processes, In Brachman, R., Levesque, H. & Reiter, R. (eds.) Proceedings ofThe International Conference on the Principles of Knowledge Representation and Reasoning, Morgan Kaufamnn: Los Altos.Google Scholar
  15. Randell, D. A. & Cohn, A. G. (1992). Exploiting Lattices in a Theory of Space and Time.Computers and Mathematics with Applications 23(6–9): 459–476. Also appears inSemantic Networks, F. Lehmann (ed.), Pergamon Press: Oxford, pp. 459–476, 1992.Google Scholar
  16. Randell, D. A., Cohn, A. G. & Cui, Z. (1992a). Computing Transitivity Tables: A Challenge for Automated Theorem Provers. ProceedingsCADE 11, Springer Verlag: Berlin.Google Scholar
  17. Randell, D. A., Cohn, A. G. & Cui, Z. (1992b). An Interval Logic for Space Based on “Connection”. ProceedingsECAI-92, 394–398. John Wiley: Chichester.Google Scholar
  18. Randell, D. A., Cohn, A. G. & Cui, Z. (1992c). Naive Topology: Modelling the Force Pump. In Struss, P. & Faltings, B. (eds.)Advances in Qualitative Physics, 177–192. MIT Press.Google Scholar
  19. Randell, D. A., Cui, Z. & Cohn, A. G. (1992). A Spatial Logic Based on Regions and Connection. Proceedings ofThe 3rd International Conference on Knowledge Representation and Reasoning, 165–176. Morgan Kaufamnn: San Mateo.Google Scholar
  20. Vieu, L. (1991). Sémantique des relations spatiales et inférences spatio-temporelles. PhD thesis, Université Paul Sabatier, Toulouse.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. G. Cohn
    • 1
  • J. M. Gooday
    • 1
  • B. Bennett
    • 1
  • N. M. Gotts
    • 1
  1. 1.Qualitative Spatial Reasoning Group, Division of Artificial Intelligence, School of Computer StudiesUniversity of LeedsEngland

Personalised recommendations