Pattern stability in the insect segment

I. Pattern reconstitution by intercalary regeneration and cell sorting inDysdercus intermedius Dist.
  • Katharina Nübler-Jung


  1. 1.

    The mechanisms of pattern reconstitution in the abdominal segment of insects were studied by transplantations between the wild type and a colour mutant of the bugDysdercus intermedius. In this species, anterior and posterior regions of the segment differ in pigmentation. Thus transplants are marked by donor genotype and by region-specific pigmentation. Moreover, the translucent cuticle allows direct and continuous observation of the behaviour of host and transplant cells.

  2. 2.

    Transplants rotated by 90° re-rotate so as to approach or even restore the original relations with their surroundings, whereas transplants completely surrounded by cells from another segment region tend to contract. Both observations indicate differences in adhesiveness between cells from different regions of a segment.

  3. 3.

    When transplants rotated by 180° or shifted to different antero-posterior levels in a segment cannot approach their original situations by rerotation, then conspicuous folds appear before moults in the regions where cells from different segment levels meet, and these regions become pigmented according to the levels which were lacking in between. This indicates that an intercalary regenerate is formed which eliminates the discontinuity in positional values created by transplantation.

  4. 4.

    The intercalary regenerate forms essentially from cells representing the more posterior segment level, irrespective of whether these are host or transplant cells.

  5. 5.

    It is suggested that pattern reconstitution in the abdominal segment can be explained in terms of cell behaviour, assuming cell sorting and intercalary regeneration.

  6. 6.

    This interpretation is discussed in the light of a current hypothesis which assumes that displaced cells are re-programmed in situ under the influence of a diffusible morphogen.


Key words

Pattern reconstitution Transplantation of mutant epidermis Segmental gradients Intercalary regeneration Cell sorting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohn, H.: Analyse der Regenerationsfähigkeit der Insektenextremität durch Amputations- und Transplantationsversuche an Larven der afrikanischen SchabeLeucophaea maderae Fabr. (Blattaria). II. Mitteilung, Achsendetermination. Wilhelm Roux' Archiv156, 499 (1965)Google Scholar
  2. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei Extremitäten vonLeucophaea-Larven (Blattaria). I. Femur und Tibia. Wilhelm Roux' Archiv165, 303–341 (1970a)Google Scholar
  3. Bohn, H.: Interkalare Regeneration und segmentale Gradienten bei Extremitäten vonLeucophaea-Larven (Blattaria). II. Coxa und Tarsus. Develop. Biol.23, 355–379 (1970b)PubMedGoogle Scholar
  4. Bohn, H.: Pattern reconstitution in abdominal segment ofLeucophaea maderae (Blattaria). Nature248, 608–609 (1974)PubMedGoogle Scholar
  5. Crick, F.H.C.: Diffusion in embryogenesis. Nature225, 420–422 (1970)PubMedGoogle Scholar
  6. Frankel, J.: Positional information in unicellular organisms. J. Theor. Biol.47, 439–481 (1974)PubMedGoogle Scholar
  7. French, V.: Leg regeneration in the Cockroach,Blattella germanica. I. Regeneration from a congruent tibial graft/host junction. Wilhelm Roux' Archives175, 57–76 (1976a)Google Scholar
  8. French, V.: Leg regeneration in the Cockroach,Blattella germanica. II. Regeneration from a noncongruent tibial graft/host junction. J. Embryol. exp. Morph.35, 267–301 (1976b)PubMedGoogle Scholar
  9. French, V., Bryant, P.J., Bryant, S.V.: A model for pattern regulation in epimorphic fields. Science193, 969–981 (1976)PubMedGoogle Scholar
  10. French, V., Bullière, D.: Nouvelles données sur la détermination de la position des cellules épidermiques sur un appendice de la blatte. Paris: C.R. Acad. Sci.180, 53–56 (1975a)Google Scholar
  11. French, V., Bullière, D.: Etude de la détermination de la position des cellules: ordonnance des cellules autour d'un appendice de blatte; démonstration du concept de génératrice. Paris: C.R. Acad. Sci.180, 295–298 (1975b)Google Scholar
  12. Hollweg, G.: Eine neue Farbmuster-Mutante “white” der roten BaumwollwanzeDysdercus intermedius Dist. (Heteroptera, Pyrrhocoridae). Biol. Zbl.91, 545–556 (1972)Google Scholar
  13. Lawrence, P.A.: Gradients in the insect segment: the orientation of hairs in the milkweed bugOncopeltus fasciatus. J. exp. Biol.44, 607–620 (1966)Google Scholar
  14. Lawrence, P.A.: Cell movement during pattern regulation inOncopeltus. Nature248, 609–610 (1974)PubMedGoogle Scholar
  15. Lawrence, P.A., Crick, F.H.C., Munro, M.: A gradient of positional information in an insect,Rhodnius. J. Cell Sci.11, 815–853 (1972)PubMedGoogle Scholar
  16. Lawrence, P.A., Green, S.M.: The anatomy of a compartment border. The intersegmental boundary inOncopeltus. J. Cell Biol.65, 373–382 (1975)PubMedGoogle Scholar
  17. Lawrence, P.A., Staddon, B.W.: Peculiarities of the epidermal gland system of the cotton stainerDysdercus fasciatus Signoret (Heteroptera, Pyrrhocoridae). J. Ent. (A)49, 121–130 (1975)Google Scholar
  18. Locke, M.: The cuticular pattern in an insect,Rhodnius proxilus Stål. J. exp. Biol.36, 459–477 (1959)Google Scholar
  19. Locke, M.: The development of patterns in the integument of insects. Adv. Morphogen.6, 33–87 (1967)Google Scholar
  20. Loewenstein, W.R.: III. Emergence of order in tissues and organs. Communication through cell junctions. Implications in growth control and differentiation. Develop. Biol. Supplement2, 151–183 (1968)Google Scholar
  21. Loewenstein, W.R.: Membrane junctions in growth and differentiation. Fed. Proc.32, 60–64 (1973)PubMedGoogle Scholar
  22. Meinhardt, H.: A model of pattern formation in insect embryogenesis. J. Cell Sci.23, 117–139 (1977)Google Scholar
  23. Nardi, J.B.: Spatial differentiation in lepidopteran wing epidermis. Thesis, Harvard University (1975)Google Scholar
  24. Nardi, J.B., Kafatos, F.C.: Polarity and gradients in lepidopteran wing epidermis. I. Changes in graft polarity, form, and cell density accompanying transpositions and reorientations. J. Embryol. exp. Morph.36, 469–487 (1976a)PubMedGoogle Scholar
  25. Nardi, J.B., Kafatos, F.C.: Polarity and gradients in lepidopteran wing epidermis. II. The differential adhesiveness model: gradient of a non-diffusible cell surface parameter. J. Embryol. exp. Morph.36, 498–512 (1976b)Google Scholar
  26. Nübler-Jung, K.: Cell migration during pattern reconstitution in the insect segment (Dysdercus intermedius Dist., Heteroptera). Nature248, 610–611 (1974)PubMedGoogle Scholar
  27. Piepho, H., Hintze-Podufal, C.: Zur Polarität des Insektensegmentes. I. Induktion des Segmenthinterrandes beiGalleria mellonella L. Biol. Zbl.90, 419–431 (1971)Google Scholar
  28. Piepho, H., Streichhahn, J., Vornkahl, G.: Zur Polarität des Insektensegmentes. II. Artunspezifität des segmentalen Gradienten der Wachsmotten. Biol. Zbl.92, 137–149 (1973)Google Scholar
  29. Sander, K.: Analyse des ooplasmatischen Reaktionssystems vonEuscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. II. Mitt: Die Differenzierungsleistungen nach Verlagern von Hinterpolmaterial. Wilhelm Roux' Archiv151, 660–707 (1960)Google Scholar
  30. Sander, K.: Bildung und Kontrolle räumlicher Muster bei Metazoen. Verh. Dtsch. Zool. Ges.1974, 58–70 (1975)Google Scholar
  31. Schaller, H., Gierer, A.: Distribution of head activating substance inHydra and its location in membrane particles in nerve cells. J. Embryol. Exp. Morphol.29, 39–52 (1973)PubMedGoogle Scholar
  32. Shaw, V.K., Bryant, P.J.: Intercalary leg regeneration in the large milkweed bug,Oncopeltus fasciatus. Develop. Biol.45, 187–191 (1975)PubMedGoogle Scholar
  33. Stumpf, H.F.: Über gefälleabhängige Bildungen des Insektensegments. J. Insect Physiol.12, 601–617 (1966)Google Scholar
  34. Stumpf, H.F.: Über die Lagebestimmung der Kutikularzonen innerhalb eines Segmentes vonGalleria mellonella. Develop. Biol.16, 144–167 (1967a)PubMedGoogle Scholar
  35. Stumpf, H.F.: About the model of a concentration gradient in the insect segment. Replication to Locke [3d]. Naturwiss.54, 50–51 (1967b)Google Scholar
  36. Wigglesworth, V.B.: “The control of growth and form: A study of the epidermal cell in an insect” New York: Cornell University Press, Ithaca (1959)Google Scholar
  37. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol.25, 1–47 (1969)PubMedGoogle Scholar
  38. Wolpert, L.: Positional information and pattern formation. Curr. Top. Dev. Biol.6, 183–224 (1971)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Katharina Nübler-Jung
    • 1
  1. 1.Biologisches Institut I (Zoologie) der Albert-Ludwigs-UniversitätFreiburg i.Br.Germany

Personalised recommendations