Wilhelm Roux's archives of developmental biology

, Volume 187, Issue 3, pp 211–217 | Cite as

Amino acid transport and protein synthesis in induced ectoderm of amphibian embryos

  • Wilhelm Minuth
  • Maria Minuth
  • Heinz Tiedemann
Article

Summary

Isolated gastrula ectoderm ofTriturus alpestris orAmbystoma mexicanum was induced by the vegetalizing factor. Protein synthesis in the induced and uninduced control explants was measured by double labelling with3H-and14C-amino acids after different periods of cultivation. Slight differences were observed in the pattern of nuclear proteins after 12 h of cultivation and in the pattern of cytoplasmic proteins after 48 h of cultivation.

The uptake of leucine started to increase in induced explants after 48 h of cultivation and after 96 h was about 50 times greater than in uninduced control explants. The uptake is reduced under partially anaerobic conditions. Ouabain inhibits the uptake by about 50%.

Key words

Amphibian ectoderm Induction Amino acid transport Protein synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Born, J., Geithe, H.P., Tiedemann, H., Tiedemann, H., Kocher-Becker, U.: Isolation of a vegetalizing inducing factor. Z. Physiol. Chem.353, 1075–1084 (1972)Google Scholar
  2. Deuchar, E.M.: Biochemical patterns in early developmental stages of vertebrates. In: The biochemistry of animal development I (R. Weber, ed.), pp. 246–304. New York, London: Academic Press 1965Google Scholar
  3. Flickinger, R.A.: A study of the metabolism of amphibian neural crest cells during their migration and pigmentation in vitro. J. Exp. Zool.112, 165–175 (1949)Google Scholar
  4. Fujitani, H., Holoubek, V.: Fractionation of nuclear proteins by extraction with solutions of different ionic strength. Int. J. Biochem.6, 547–554 (1975)Google Scholar
  5. Geithe, H.P., Asashima, M., Born, J., Tiedemann, H., Tiedemann, H.: Isolation of a homogeneous morphogenetic factor, inducing mesoderm and endoderm derived tissues inTriturus ectoderm. Exp. Cell Res.94, 447–449 (1975)Google Scholar
  6. Grunz, H.: The ultrastructure of amphibian ectoderm treated with an inductor or Actinomycin. D. Wilhelm Roux' Arch. Entwicklungsmech. Org.173, 283–293 (1973)Google Scholar
  7. Hayashi, K., Matsutera, E., Ohba, Y.: A theoretical consideration of the abnormal behavior of histones on sodium dodecylsulfate gel electrophoresis. Biochim. Biophys. Acta342, 185–194 (1974)Google Scholar
  8. Holoubek, V., Tiedemann, H.: Electrophoretic spectra of nuclear proteins from embryos ofXenopus laevis. Wilhelm Roux' Arch. Entwicklungsmech. Org.184, 171–180 (1978)Google Scholar
  9. Holtfreter, J.: Über die Aufzucht isolierter Teile des Amphibienkeimes. II. Züchtung von Keimen und Keimteilen in Salzlösung. Wilhelm Roux' Arch. Entwicklungsmech. Org.124, 404–466 (1931)Google Scholar
  10. Kocher-Becker, U., Tiedemann, H.: Exovagination of newt endoderm: Cell affinities altered by the mesodermal inducing factor. Science147, 167–169 (1965)Google Scholar
  11. Kocher-Becker, U., Tiedemann, H.: Induction of mesodermal and endodermal structures and primordial germ cells inTriturus ectoderm by a vegetalizing factor from chick embryos. Nature233, 65–66 (1971)Google Scholar
  12. Kohl, D.M., Greene, R.F., Flickinger, R.A.: The role of RNA polymerase in the control of RNA synthesis in vitro fromRana pipiens embryo chromatin. Biochim. Biophys. Acta179, 28–38 (1969)Google Scholar
  13. Nishino, H., Christopher, C.W., Schiller, M.R., Gammon, M.T., Ullrey, D., Isselbacher, K.J.: Sodium-dependent amino acid transport by cultured hamster cell: Membrane vesicles retain transport changes due to glucose starvation and cycloheximide. Proc. Natl. Acad. Sci. USA75, 5048–5051 (1978)Google Scholar
  14. Oxender, D.L., Christensen, H.N.: Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J. Biol. Chem.238, 3686–3699 (1963)Google Scholar
  15. Schatzmann, H.J.: Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. Physiol. Pharmacol. Acta11, 346–354 (1953)Google Scholar
  16. Tiedemann, H., Über das Verhalten von Nucleotiden in Embryonen bei Aerobiose und Anaerobiose. Biochim. Biophys. Acta23, 385–393 (1957)Google Scholar
  17. Tiedemann, H., Born, J.: Vergleichende Untersuchungen über die Protein- und Nucleinsäuresynthese in Tumorzellen, Embryonen und Retina bei Aerobiose und Anaerobiose. Z. Naturforsch.15b, 380–394 (1960)Google Scholar
  18. Tiedemann, H., Tiedemann, H.: Einwirkung von HCN auf die frühen Entwicklungsstadien des Alpenmolches. Z. Naturforsch.9b, 371–380 (1954)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wilhelm Minuth
    • 1
  • Maria Minuth
    • 1
  • Heinz Tiedemann
    • 1
  1. 1.Institut für Molekularbiologie und BiochemieFreie Universität BerlinBerlin 33

Personalised recommendations